International audienceWe present the generalized space-time cube, a descriptive model for visualizations of temporal data. Visualizations are described as operations on the cube, which transform the cube's 3D shape into readable 2D visualizations. Operations include extracting subparts of the cube, flattening it across space or time or transforming the cubes geometry and content. We introduce a taxonomy of elementary space-time cube operations and explain how these operations can be combined and parameterized. The generalized space-time cube has two properties: (1) it is purely conceptual without the need to be implemented, and (2) it applies to all datasets that can be represented in two dimensions plus time (e.g. geo-spatial, videos, networks, multivariate data). The proper choice of space-time cube operations depends on many factors, for example, density or sparsity of a cube. Hence, we propose a characterization of structures within space-time cubes, which allows us to discuss strengths and limitations of operations. We finally review interactive systems that support multiple operations, allowing a user to customize his view on the data. With this framework, we hope to facilitate the description, criticism and comparison of temporal data visualizations, as well as encourage the exploration of new techniques and systems. This paper is an extension of Bach et al.'s (2014) work
In this paper, we present the results of a human-computer interaction experiment that compared the performance of the animation of dynamic graphs to the presentation of small multiples and the effect that mental map preservation had on the two conditions. Questions used in the experiment were selected to test both local and global properties of graph evolution over time. The data sets used in this experiment were derived from standard benchmark data sets of the information visualization community. We found that small multiples gave significantly faster performance than animation overall and for each of our five graph comprehension tasks. In addition, small multiples had significantly more errors than animation for the tasks of determining sets of nodes or edges added to the graph during the same timeslice, although a positive time-error correlation coefficient suggests that, in this case, faster responses did not lead to more errors. This result suggests that, for these two tasks, animation is preferable if accuracy is more important than speed. Preserving the mental map under either the animation or the small multiples condition had little influence in terms of error rate and response time.
Abstract-Several previous systems allow users to interactively explore a large input graph through cuts of a superimposed hierarchy. This hierarchy is often created using clustering algorithms or topological features present in the graph. However, many graphs have domain-specific attributes associated with the nodes and edges which could be used to create many possible hierarchies providing unique views of the input graph. GrouseFlocks is a system for the exploration of this graph hierarchy space. By allowing users to see several different possible hierarchies on the same graph, the system helps users investigate graph hierarchy space instead of a single, fixed hierarchy. GrouseFlocks provides a simple set of operations so that users can create and modify their graph hierarchies based on selections. These selections can be made manually or based on patterns in the attribute data provided with the graph. It provides feedback to the user within seconds, allowing interactive exploration of this space.
We describe TopoLayout, a feature-based, multilevel algorithm that draws undirected graphs based on the topological features they contain. Topological features are detected recursively inside the graph, and their subgraphs are collapsed into single nodes, forming a graph hierarchy. Each feature is drawn with an algorithm tuned for its topology. As would be expected from a feature-based approach, the runtime and visual quality of TopoLayout depends on the number and types of topological features present in the graph. We show experimental results comparing speed and visual quality for TopoLayout against four other multilevel algorithms on a variety of data sets with a range of connectivities and sizes. TopoLayout frequently improves the results in terms of speed and visual quality on these data sets.
Visualisation of taxonomies and sets has recently become an active area of research. Many application fields now require more than a strict classification of elements into a hierarchy tree. Euler diagrams, one of the most natural ways of depicting intersecting sets, may provide a solution to these problems. In this paper, we present an approach for the automatic generation of Euler-like diagrams. This algorithm differs from previous approaches in that it has no undrawable instances of input, allowing it to be used in systems where the output is always required. We also improve the readability of Euler diagrams through the use of Bézier curves and transparent coloured textures. Our approach has been implemented using the Tulip platform. Both the source and executable program used to generate the results are freely available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.