We use the gauge/gravity correspondence to study the thermodynamics of a magnetized quark-gluon plasma in the presence of a scalar operator of dimension ∆ = 2. We proceed by working in a five-dimensional gauged supergravity theory, where we numerically construct an asymptotically AdS 5 background that describes a black D3-brane in the presence of a magnetic and a scalar fields. We study the asymptotic behavior of the background and its fields close to the AdS 5 region to latter perform a thermodynamic analysis of the solution that includes the renormalization of the free energy associated to it. We find that because of the presence of the scalar operator, there exists a maximum intensity for the magnetic field that the plasma can hold, while for any given intensity smaller than that value, there are two states that differ in their vacuum expectation value for the scalar operator. We show that one of the two branches just mentioned is thermodynamically favored over the other.
We extend our analysis of holographic meson dissociation in the presence of an intense magnetic field. In addition to the previously known critical temperature above which the mesons melt, we found that for certain magnetic field intensities there exists a second lower critical temperature, below which stable mesons cease to exist. While we showed before that there is a range of high temperatures for which mesons can be melted by changing the magnetic field intensity, here we show that, as a consequence of the second critical point, there is also a range of low temperatures for which this phenomenom, which we term Magnetic Meson Melting (MMM), can be triggered. Additionaly, we also show that the magnetic field decreases the mass gap of the meson spectrum along with their masses. We are able to observe this by constructing a configuration that makes it possible to apply gauge/gravity methods to study fundamental degrees of freedom in a quark-gluon plasma subject to a magnetic field as intense as that expected in high energy collisions. This is achieved by the confection of a ten-dimensional background that is dual to the magnetized plasma and nonetheless permits the embedding of D7-branes in it. The main difference with previous approaches, which in consequence gives the novel results, is that the magnetic field retroacts in the geometry itself, as opposed to be confined to the world volume of the probe D7-branes.
We use holographic methods to study several chaotic properties of a super Yang-Mills theory at temperature T in the presence of a background magnetic field of constant strength B. The field theory we work on has a renormalization flow between a fixed point in the ultraviolet and another in the infrared, occurring in such a way that the energy at which the crossover takes place is a monotonically increasing function of the dimensionless ratio B/T 2. By considering shock waves in the bulk of the dual gravitational theory, and varying B/T 2 , we study how several chaos-related properties of the system behave while the theory they live in follows the renormalization flow. In particular, we show that the entanglement and butterfly velocities generically increase in the infrared theory, violating the previously suggested upper bounds but never surpassing the speed of light. We also investigate the recent proposal relating the butterfly velocity with diffusion coefficients. We find that electric diffusion constants respect the lower bound proposed by Blake. All our results seem to consistently indicate that the global effect of the magnetic field is to strengthen the internal interaction of the system.
Abstract:We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a 'Minkowski embedding', in which they lie outside of the horizon, and a 'black hole embedding', in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.