Here, we present the first in vivo non-invasive measurement of the axon diameter distribution in the rat corpus callosum. Previously, this measurement was only possible using invasive histological methods. The axon diameter, along with other physical properties, such as the intra-axonal resistance, membrane resistance and capacitance etc. helps determine many important functional properties of nerves, such as their conduction velocity. In this work, we provide a novel magnetic resonance imaging method called AxCaliber, which can resolve the distinct signatures of trapped water molecules diffusing within axons as well as water molecules diffusing freely within the extra-axonal space. Using a series of diffusion weighted magnetic resonance imaging brain scans, we can reliably infer both the distribution of axon diameters and the volume fraction of these axons within each white matter voxel. We were able to verify the known microstructural variation along the corpus callosum of the rat from the anterior (genu) to posterior (splenium) regions. AxCaliber yields a narrow distribution centered approximately 1 microm in the genu and splenium and much broader distributions centered approximately 3 microm in the body of the corpus callosum. The axon diameter distribution found by AxCaliber is generally broader than those usually obtained by histology. One factor contributing to this difference is the significant tissue shrinkage that results from histological preparation. To that end, AxCaliber might provide a better estimate of the in vivo morphology of white matter. Being a magnetic resonance imaging based methodology, AxCaliber has the potential to be used in human scanners for morphological studies of white matter in normal and abnormal development, and white matter related diseases.
The understanding of the relationship between structure and function has always characterized biology in general and neurobiology in particular. One such fundamental relationship is that between axon diameter and the axon's conduction velocity (ACV). Measurement of these neuronal properties, however, requires invasive procedures that preclude direct elucidation of this relationship in vivo. Here we demonstrate that diffusion-based MRI is sensitive to the fine microstructural elements of brain wiring and can be used to quantify axon diameter in vivo. Moreover, we demonstrate the in vivo correlation between the diameter of an axon and its conduction velocity in the human brain. Using AxCaliber, a novel magnetic resonance imaging technique that enables us to estimate in vivo axon diameter distribution (ADD) and by measuring the interhemispheric transfer time (IHTT) by electroencephalography, we found significant linear correlation, across a cohort of subjects, between brain microstructure morphology (ADD) and its physiology (ACV) in the tactile and visual sensory domains. The ability to make a quantitative assessment of a fundamental physiological property in the human brain from in vivo measurements of ADD may shed new light on neurological processes occurring in neuroplasticity as well as in neurological disorders and neurodegenerative diseases.
The ability to image the cortex laminar arrangements in vivo is one of the holy grails of neuroscience. Recent studies have visualized the cortical layers ex vivo and in vivo (on a small region of interest) using high-resolution T(1)/T(2) magnetic resonance imaging (MRI). In this study, we used inversion-recovery (IR) MRI to increase the sensitivity of MRI toward cortical architecture and achieving whole-brain characterization of the layers, in vivo, in 3D on humans and rats. Using the IR measurements, we computed 3D signal intensity plots along the cortex termed corticograms to characterize cortical substructures. We found that cluster analyses of the multi-IR images along the cortex divides it into at least 6 laminar compartments. To validate our observations, we compared the IR-MRI analysis with histology and revealed a correspondence, although these 2 measures do not represent similar quantities. The abilities of the method to segment the cortex into layers were demonstrated on the striate cortex (visualizing the stripe of Gennari) and on the frontal cortex. We conclude that the presented methodology can serve as means to study and characterize individual cortical architecture and organization.
PurposeA comprehensive image‐based characterization of white matter should include the ability to quantify myelin and axonal attributes irrespective of the complexity of fibre organization within the voxel. While progress has been made with diffusion MRI‐based approaches to measure axonal morphology, to date available myelin metrics simply assign a single scalar value to the voxel, reflecting some form of average of its constituent fibres. Here, a new experimental framework that combines diffusion MRI and relaxometry is introduced. It provides, for the first time, the ability to assign to each unique fibre system within a voxel, a unique value of the longitudinal relaxation time, T 1, which is largely influenced by the myelin content.MethodsWe demonstrate the method through simulations, in a crossing fibres phantom, in fixed brains and in vivo.ResultsThe method is capable of recovering unique values of T 1 for each fibre population.ConclusionThe ability to extract fibre‐specific relaxometry properties will provide enhanced specificity and, therefore, sensitivity to differences in white matter architecture, which will be invaluable in many neuroimaging studies. Further the enhanced specificity should ultimately lead to earlier diagnosis and access to treatment in a range of white matter diseases where axons are affected. Magn Reson Med 75:372–380, 2016. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.