When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects.
The timescale of structural remodeling that accompanies functional neuroplasticity is largely unknown. Although structural remodeling of human brain tissue is known to occur following long-term (weeks) acquisition of a new skill, little is known as to what happens structurally when the brain needs to adopt new sequences of procedural rules or memorize a cascade of events within minutes or hours. Using diffusion tensor imaging (DTI), an MRI-based framework, we examined subjects before and after a spatial learning and memory task. Microstructural changes (as reflected by DTI measures) of limbic system structures (hippocampus and parahippocampus) were significant after only 2 hr of training. This observation was also found in a supporting rat study. We conclude that cellular rearrangement of neural tissue can be detected by DTI, and that this modality may allow neuroplasticity to be localized over short timescales.
Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains ("female brain" or "male brain"). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features in males and females) and internally consistent (i.e., a brain has only "male" or only "female" features). Here, analysis of MRIs of more than 1,400 human brains from four datasets reveals extensive overlap between the distributions of females and males for all gray matter, white matter, and connections assessed. Moreover, analyses of internal consistency reveal that brains with features that are consistently at one end of the "maleness-femaleness" continuum are rare. Rather, most brains are comprised of unique "mosaics" of features, some more common in females compared with males, some more common in males compared with females, and some common in both females and males. Our findings are robust across sample, age, type of MRI, and method of analysis. These findings are corroborated by a similar analysis of personality traits, attitudes, interests, and behaviors of more than 5,500 individuals, which reveals that internal consistency is extremely rare. Our study demonstrates that, although there are sex/gender differences in the brain, human brains do not belong to one of two distinct categories: male brain/female brain.gender differences | sex differences | brain structure | brain connectivity | behavior T he question of whether males and females form two distinct categories has attracted thinkers from ancient times to this day. Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved (for a historical overview, see refs. 1 and 2). Documented sex/gender* differences in the brain are often taken as support of a sexually dimorphic view of human brains ("female brain" vs. "male brain"), and consequently, of a sexually dimorphic view of human behavior, cognition, personality, attitudes, and other gender characteristics (3). Joel (4, 5) has recently argued that the existence of sex/gender differences in the brain is not sufficient to conclude that human brains belong to two distinct categories. Rather, such a distinction requires the fulfillment of two conditions: one, the form of the elements that show sex/gender differences should be dimorphic, that is, with little overlap between the forms of the elements in males and females. Two, there should be a high degree of internal consistency in the form of the different elements of a single brain (e.g., all elements have the "male" form).Previous criticisms of the dichotomous view of human brain have focused on the fact that most sex/gender differences are nondimorphic popul...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.