Service quality and efficiency of urban systems have been dramatically boosted by various high technologies for real-time monitoring and remote control, and have also gained privileged space in water distribution. Monitored hydraulic and quality parameters are crucial data for developing planning, operation and security analyses in water networks, which makes them increasingly reliable. However, devices for monitoring and remote control also increase the possibilities for failure and cyber-attacks in the systems, which can severely impair the system operation and, in extreme cases, collapse the service. This paper proposes an automatic two-step methodology for cyber-attack detection in water distribution systems. The first step is based on signal-processing theory, and applies a fast Independent Component Analysis (fastICA) algorithm to hydraulic time series (e.g., pressure, flow, and tank level), which separates them into independent components. These components are then processed by a statistical control algorithm for automatic detection of abrupt changes, from which attacks may be disclosed. The methodology is applied to the case study provided by the Battle of Attack Detection Algorithms (BATADAL) and the results are compared with seven other approaches, showing excellent results, which makes this methodology a reliable early-warning cyber-attack detection approach.
To satisfy their main goal, namely providing quality water to consumers, water distribution networks (WDNs) need to be suitably monitored. Only well designed and reliable monitoring data enables WDN managers to make sound decisions on their systems. In this belief, water utilities worldwide have invested in monitoring and data acquisition systems. However, good monitoring needs optimal sensor placement and presents a multi-objective problem where cost and quality are conflicting objectives (among others
The optimization of pumping stations operation in water distribution networks has been largely studied, especially with the development of speed drivers, which allowed the machines to adjust the hydraulic power inserted to the system according to the demand requirements. Although this approach results in high benefits, the original characteristics of pumps remains the same. Consequently, the pumps can be operating in a range of suboptimal efficiency. Thus, this paper will evaluate the benefits that an optimized pump selection can bring for variable speed operation. The selection of the pumps best efficiency point and the number of pumps operating in parallel are defined applying Particle Swarm Optimization (PSO) to minimize the energy costs of the system. For the case study, the results show that there is no benefit when more pumps are operated in parallel, and that a flexible operational routine significantly reduces the energy expenses, especially when the pump is selected for this purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.