We review and test twelve different approaches to the detection of finite-time coherent material structures in two-dimensional, temporally aperiodic flows. We consider both mathematical methods and diagnostic scalar fields, comparing their performance on three benchmark examples: the quasiperiodically forced Bickley jet, a two-dimensional turbulence simulation, and an observational wind velocity field from Jupiter's atmosphere. A close inspection of the results reveals that the various methods often produce very different predictions for coherent structures, once they are evaluated beyond heuristic visual assessment. As we find by passive advection of the coherent set candidates, false positives and negatives can be produced even by some of the mathematically justified methods due to the ineffectiveness of their underlying coherence principles in certain flow configurations. We summarize the inferred strengths and weaknesses of each method, and make general recommendations for minimal self-consistency requirements that any Lagrangian coherence detection technique should satisfy.Keywords: Lagrangian coherent structures; nonlinear dynamical systems; vortex dynamics Coherent Lagrangian (material) structures are ubiquitous in unsteady fluid flows, often observable indirectly from tracer patterns they create, for example, in the atmosphere and the ocean. Despite these observations, a direct identification of these structures from the flow velocity field (without reliance on seeding passive tracers) has remained a challenge. Several heuristic and mathematical detection methods have been developed over the years, each promising to extract materially coherent domains from arbitrary unsteady velocity fields over a finite time interval of interest. Here we review a number of these methods and compare their performance systematically on three benchmark velocity data sets. Based on this comparison, we discuss the strengths and weaknesses of each method, and recommend minimal self-consistency requirements that Lagrangian coherence detection tools should satisfy.
We develop a variational principle that extends the notion of a shearless transport barrier from steady to general unsteady two-dimensional flows and maps defined over a finite time interval. This principle reveals that hyperbolic Lagrangian Coherent Structures (LCSs) and parabolic LCSs (or jet cores) are the two main types of shearless barriers in unsteady flows. Based on the boundary conditions they satisfy, parabolic barriers are found to be more observable and robust than hyperbolic barriers, confirming widespread numerical observations. Both types of barriers are special null-geodesics of an appropriate Lorentzian metric derived from the Cauchy--Green strain tensor. Using this fact, we devise an algorithm for the automated computation of parabolic barriers. We illustrate our detection method on steady and unsteady non-twist maps and on the aperiodically forced Bickley jet.Comment: Submitted to Physica
We develop a general theory of transport barriers for three-dimensional unsteady flows with arbitrary time-dependence. The barriers are obtained as two-dimensional Lagrangian Coherent Structures (LCSs) that create locally maximal deformation. Along hyperbolic LCSs, this deformation is induced by locally maximal normal repulsion or attraction. Along shear LCSs, the deformation is created by locally maximal tangential shear. Hyperbolic LCSs, therefore, play the role of generalized stable and unstable manifolds, while closed shear LCSs (elliptic LCSs) act as generalized KAM tori or KAM-type cylinders. All these barriers can be computed from our theory as explicitly parametrized surfaces. We illustrate our results by visualizing two-dimensional hyperbolic and elliptic barriers in steady and unsteady versions of the ABC flow.
We introduce an approach to identify elliptic transport barriers in three-dimensional, time-aperiodic flows. Obtained as Lagrangian Coherent Structures (LCSs), the barriers are tubular non-filamenting surfaces that form and bound coherent material vortices. This extends a previous theory of elliptic LCSs as uniformly stretching material surfaces from two-dimensional to three-dimensional flows. Specifically, we obtain explicit expressions for the normals of pointwise (near-) uniformly stretching material surfaces over a finite time interval. We use this approach to visualize elliptic LCSs in steady and time-aperiodic ABC-type flows.
A study of anisotropic heat transport in reversed shear (nonmonotonic q-profile) magnetic fields is presented. The approach is based on a recently proposed Lagrangian-Green's function method that allows an efficient and accurate integration of the parallel (i.e., along the magnetic field) heat transport equation. The magnetic field lines are described by a nontwist Hamiltonian system, known to exhibit separatrix reconnection and robust shearless (dq/dr=0) transport barriers. The changes in the magnetic field topology due to separatrix reconnection lead to bifurcations in the equilibrium temperature distribution. For perturbations of moderate amplitudes, magnetic chaos is restricted to bands flanking the shearless region. As a result, the temperature flattens in the chaotic bands and develops a very sharp radial gradient at the shearless region. For perturbations with larger amplitude, shearless Cantori (i.e., critical magnetic surfaces located at the minimum of the q profile) give rise to anomalous temperature relaxation involving widely different time scales. The first stage consists of the relatively fast flattening of the radial temperature profile in the chaotic bands with negligible flux across the shearless region that, for practical purposes, on a short time scale acts as an effective transport barrier despite the lack of magnetic flux surfaces. In the long-time scale, heat starts to flow across the shearless region, albeit at a comparatively low rate. The transport of a narrow temperature pulse centered at the reversed shear region exhibits weak self-similar scaling with non-Gaussian scaling functions indicating that transport at this scale cannot be modeled as a diffusive process with a constant diffusivity. Evidence of nonlocal effective radial transport is provided by the existence of regions with nonzero heat flux and zero temperature gradient. Parametric flux-gradient plots exhibit multivalued loops that question the applicability of the Fourier-Fick's prescription even in the presence of a finite pinch velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.