The colicin G producer Escherichia coli CA46, the colicin H producer E. coli CA58 and E. coli Nissle 1917 (DSM 6601) were shown to produce microcin H47 and the newly described microcin M. Both microcins were exported like colicin V by an RND-type export system, including TolC. The gene cluster encoding microcins H47 and M in strains CA46 and CA58 is nearly identical to that in strain DSM 6601, except that two additional genes are included. A Fur box identified in front of the microcin-encoding genes explained the observed iron regulation of microcin production. The catecholate siderophore receptors Fiu, Cir and FepA from E. coli and IroN, Cir and FepA from Salmonella were identified as receptors for microcins M, H47 and E492. IroN takes up the glucose-containing catecholate siderophore salmochelin, whose synthesis is encoded in the iro gene cluster found in Salmonella and certain, often uropathogenic, E. coli strains. A gene in this iro cluster, iroB, which encodes a putative glycosyltransferase, was also found in the microcin H47/M and microcin E492 gene clusters. These microcins could aid the producing strain in competing against enterobacteria that utilize catecholate siderophores.
Nothing is known about soil CdtB in cacao. Our data showed that CdtB such as Enterobacter sp. has high immobilization capacity. Furthermore, the otavite found in situ might be mineralized due to the bacterial metabolic activity of CdtB.
The oxalate-carbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO(2). In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil.
The purpose of this study was to characterize the hantaviruses circulating in northwestern Argentina. Human and rodent studies were conducted in Yuto, where most cases of hantavirus pulmonary syndrome (HPS) occur. Partial virus genome sequences were obtained from the blood of 12 cases of HPS, and from the lungs of 4 Calomys callosus and 1 Akodon simulator. Phylogenetic analysis showed that three genotypes associated with HPS circulate in Yuto. Laguna Negra (LN) virus, associated with C. laucha in Paraguay, was identified for the first time in Argentina; it was recovered from human cases and from C. callosus samples. The high sequence identity between human and rodent samples implicated C. callosus as the primary rodent reservoir for LN virus in Yuto. The genetic analysis showed that the Argentinian LN virus variant differed 16.8% at the nucleotide level and 2.9% at the protein level relative to the Paraguayan LN virus. The other two hantavirus lineages identified were the previously known Bermejo and Oran viruses.
In a double-blind prospective study including 114 healthy young volunteers, the presence in human feces of the yogurt organisms Lactobacillus delbrueckii and Streptococcus thermophilus after repeated yogurt consumption (15 days) was analyzed by culture, specific PCR, and DNA hybridization of total fecal DNA. Detection of yogurt lactic acid bacteria in total fecal DNA by bacterial culture and PCR assay was consistently negative. DNA compatible with yogurt bacteria was found by hybridization experiments in only 10 (10.52%) of 96 individuals after consumption of fresh yogurt and in 2 (2.10%) of 96 individuals after consumption of pasteurized yogurt (P ؍ 0.01).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.