BackgroundIn Streptomyces, understanding the switch from primary to secondary metabolism is important for maximizing the production of secondary metabolites such as antibiotics, as well as for optimizing recombinant glycoprotein production. Differences in Streptomyces lividans bacterial aggregation as well as recombinant glycoprotein production and O-mannosylation have been reported due to modifications in the shake flask design. We hypothetized that such differences are related to the metabolic switch that occurs under oxygen-limiting conditions in the cultures.ResultsShake flask design was found to affect undecylprodigiosin (RED, a marker of secondary metabolism) production; the RED yield was 12 and 385 times greater in conventional normal Erlenmeyer flasks (NF) than in baffled flasks (BF) and coiled flasks (CF), respectively. In addition, oxygen transfer rates (OTR) and carbon dioxide transfer rates were almost 15 times greater in cultures in CF and BF as compared with those in NF. Based on these data, we obtained respiration quotients (RQ) consistent with aerobic metabolism for CF and BF, but an RQ suggestive of anaerobic metabolism for NF.ConclusionAlthough the metabolic switch is usually related to limitations in phosphate and nitrogen in Streptomyces sp., our results reveal that it can also be activated by low OTR, dramatically affecting recombinant glycoprotein production and O-mannosylation and increasing RED synthesis in the process.Electronic supplementary materialThe online version of this article (10.1186/s12934-018-1035-3) contains supplementary material, which is available to authorized users.
The temperature reduces the viability and seed vigor; however, the effect of temperature on imbibition and fatty acid profile has not been studied. Chia (Salvia hispanica L.) seeds have a substantial quantity of oil, making them a potential study model for fatty acid metabolism. Therefore, we explore the effect of temperature (10, 20, and 30 °C) on chia seed imbibition, germination, and fatty acid profile by GC-MS. Imbibition FI occurs within the first hour in all the treatments; while FII and FIIend elapse with an hour of difference at 20 °C and 30 °C. The highest viability and germination rate were observed at 30 °C; while the highest concentrations of all fatty acids, except oleic acid, were observed at 20 °C. Maximum fatty acid concentrations were detected at FI and FIIend; while at 30 °C, different patterns for saturated and unsaturated fatty acids and three linolenic acid isomers were observed. A shorter FII is associated with earlier germination; the increase in concentration in fatty acids after 3 h and a negative correlation between linoleic and linolenic acid observed at 20 °C were related to a higher germination efficiency. At 30 °C, isomer formation is related to homeoviscous cell membrane adaptation.
Temperature is the main factor that impacts germination and therefore the success of annual crops, such as chia (Salvia hispanica L.), whose seeds are known for their high nutritional value related to its oil. The effect of temperature on germination is related to cardinal-temperature concepts that describe the range of temperature over which seeds of a particular species can germinate. Therefore, in this study, in addition to calculated germinative parameters such as total germination and germination rate of S. hispanica seeds, the effectiveness of non-linear models for estimating the cardinal temperatures of chia seeds was also determined. We observed that germination of S. hispanica occurred in cold to moderate-high temperatures (10–35 °C), having an optimal range between 25 and 35 °C, with the highest GR and t50 at 30 °C. Temperatures higher than 35 °C significantly reduced germination. Output parameters of the different non-linear models showed that the response of chia germination to temperature was best explained by beta models (B). Cardinal temperatures calculated by the B1 model for chia germination were: 2.52 ± 6.82 °C for the base, 30.45 ± 0.32 °C for the optimum, and 48.58 ± 2.93 °C for the ceiling temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.