The North American Regional Climate Change Assessment Program (NARCCAP) is an international effort designed to investigate the uncertainties in regional-scale projections of future climate and produce highresolution climate change scenarios using multiple regional climate models (RCMs) nested within atmosphere–ocean general circulation models (AOGCMs) forced with the Special Report on Emission Scenarios (SRES) A2 scenario, with a common domain covering the conterminous United States, northern Mexico, and most of Canada. The program also includes an evaluation component (phase I) wherein the participating RCMs, with a grid spacing of 50 km, are nested within 25 years of National Centers for Environmental Prediction–Department of Energy (NCEP–DOE) Reanalysis II.
This paper provides an overview of evaluations of the phase I domain-wide simulations focusing on monthly and seasonal temperature and precipitation, as well as more detailed investigation of four subregions. The overall quality of the simulations is determined, comparing the model performances with each other as well as with other regional model evaluations over North America. The metrics used herein do differentiate among the models but, as found in previous studies, it is not possible to determine a “best” model among them. The ensemble average of the six models does not perform best for all measures, as has been reported in a number of global climate model studies. The subset ensemble of the two models using spectral nudging is more often successful for domain-wide root-mean-square error (RMSE), especially for temperature. This evaluation phase of NARCCAP will inform later program elements concerning differentially weighting the models for use in producing robust regional probabilities of future climate change.
We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs Climatic Change (2013) driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.