The acute oral toxicity of the anticoagulant rodenticide diphacinone was found to be over 20 times greater in American kestrels (Falco sparverius; median lethal dose 96.8 mg/kg body weight) compared with Northern bobwhite (Colinus virginianus) and mallards (Anas platyrhynchos). Modest evidence of internal bleeding was observed at necropsy, although histological examination of heart, liver, kidney, lung, intestine, and skeletal muscle revealed hemorrhage over a wide range of doses (35.1-675 mg/kg). Residue analysis suggests that the half-life of diphacinone in the liver of kestrels that survived was relatively short, with the majority of the dose cleared within 7 d of exposure. Several precise and sensitive clotting assays (prothrombin time, Russell's viper venom time, thrombin clotting time) were adapted for use in this species, and oral administration of diphacinone at 50 mg/kg increased prothrombin time and Russell's viper venom time at 48 and 96 h postdose compared with controls. Prolongation of in vitro clotting time reflects impaired coagulation complex activity, and generally corresponded with the onset of overt signs of toxicity and lethality. In view of the toxicity and risk evaluation data derived from American kestrels, the involvement of diphacinone in some raptor mortality events, and the paucity of threshold effects data following short-term dietary exposure for birds of prey, additional feeding trials with captive raptors are warranted to characterize more fully the risk of secondary poisoning.
Most ecotoxicological risk assessments of wildlife emphasize contaminant exposure through ingestion of food and water. However, the role of incidental ingestion of sediment-bound contaminants has not been adequately appreciated in these assessments. This study evaluates the toxicological consequences of contamination of sediments with metals from hard-rock mining and smelting activities. Lead-contaminated sediments collected from the Coeur d'Alene River Basin in Idaho were combined with either a commercial avian maintenance diet or ground rice and fed to captive mute swans (Cygnus olor) for 6 weeks. Experimental treatments consisted of maintenance or rice diets containing 0, 12 (no rice group), or 24% highly contaminated (3,950 microg/g lead) sediment or 24% reference (9.7 microg/g lead) sediment. Although none of the swans died, the group fed a rice diet containing 24% lead-contaminated sediment were the most severely affected, experiencing a 24% decrease in mean body weight, including three birds that became emaciated. All birds in this treatment group had nephrosis; abnormally dark, viscous bile; and significant (p
Among the waterfowl affected by white phosphorus (P4) at a military base in Alaska are tundra (Cygnus columbianus) and trumpeter (C. buccinator) swans. To estimate the toxicity of P4 to swans and compare the toxic effects to those of mallards (Anas platyrhynchos), we dosed 30 juvenile mute swans (C. olor) with 0 to 5.28 mg P4/kg body weight. The calculated LD50 was 3.65 mg/kg (95% CI: 1.40 to 4. 68 mg/kg). However, many of the swans still had P4 in their gizzards after dying, as determined by "smoking gizzards" and characteristic odor, and a lower LD50 might be calculated if all of the P4 had passed into the small intestines. We attribute the retention of P4 in swans to the possibility that P4 pellets were mistaken for the similarly sized grit in their gizzards. Most swans took 1 to 4.5 days to die in contrast to the few hours normally required in mallards and death appeared to be related more to liver dysfunction than to hemolysis. White phosphorus affected several plasma constituents, most notably elevated aspartate aminotransferase, blood urea nitrogen, lactate dehydrogenase, and alanine aminotransferase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.