Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.
This report presents an analysis of trends in fatigue results from the Montana State University program on the fatigue of composite materials for wind turbine blades for the period 2005-2009. Test data can be found in the SNL/MSU/DOE Fatigue of Composite Materials Database which is updated annually. This is the fifth report in this series, which summarizes progress of the overall program since its inception in 1989. The primary thrust of this program has been research and testing of a broad range of structural laminate materials of interest to blade structures. The report is focused on current types of infused and prepreg blade materials, either processed in-house or by industry partners. Trends in static and fatigue performance are analyzed for a range of materials, geometries and loading conditions. Materials include: sixteen resins of three general types, five epoxy based paste adhesives, fifteen reinforcing fabrics including three fiber types, three prepregs, many laminate lay-ups and process variations. Significant differences in static and fatigue performance and delamination resistance are quantified for particular materials and process conditions. When blades do fail, the likely cause is fatigue in the structural detail areas or at major flaws. The program is focused strongly on these issues in addition to standard laminates. Structural detail tests allow evaluation of various blade materials options in the context of more realistic representations of blade structure than do the standard test methods. Types of structural details addressed in this report include ply drops used in thickness tapering, and adhesive joints, each tested over a range of fatigue loading conditions. Ply drop studies were in two areas: (1) a combined experimental and finite element study of basic ply drop delamination parameters for glass and carbon prepreg laminates, and (2) the development of a complex structured resininfused coupon including ply drops, for comparison studies of various resins, fabrics and pry drop thicknesses. Adhesive joint tests using typical blade adhesives included both generic testing of materials parameters using a notched-lap-shear test geometry developed in this study, and also a series of simulated blade web joint geometries fabricated by an industry partner.
This paper reports on recent fatigue data of interest to the wind turbine industry in several areas: (a) very high cycle S-N data; (b) refined Goodman Diagram; (c) effects of fiber waviness; and (d) large tow carbon fibers. Tensile fatigue results from a specialized high frequency small strand testing facility have been carried out to 1010 cycles in some cases, beyond the expected cycle range for turbines. While the data cannot be used directly in design due to the specialized test specimen, the data trends help to clarify the proper models for extrapolating from standard coupons to higher cycles. The results for various fiber and matrix systems also provide insight into basic failure mechanisms. For spectrum loading predictions, a more detailed Goodman Diagram has been developed with additional R-values (R is the ratio of minimum to maximum stress in a cycle). The data of greatest interest were obtained for tensile fatigue with low cyclic amplitudes, close to R = 1.0, to clarify the shape of the diagram as the cyclic amplitude approaches zero. These data may significantly shorten lifetime predictions compared with traditional Goodman Diagram constructions based on more limited data. The effects of material/process induced flaws on properties continues to be a major concern, particularly with large tow carbon fabrics. The results of a study of fiber waviness effects on compressive strength show significant strength reductions for severe waviness which can be introduced in resin infusion processes. The final section presents new fatigue results for large tow carbon/fiberglass hybrid composites. Epoxy resin laminates show marginally higher compressive strength and fatigue resistance with carbon fibers. Improved compressive static and fatigue performance is found with stitched fabrics as compared with woven fabrics.
Delamination at ply drops in composites with thickness tapering has been a concern in applications of carbon fibers. This study explored the resistance to delamination under fatigue loading of carbon and glass fiber prepreg laminates with the same resin system, containing various ply drop geometries, and using thicker plies typical of wind turbine blades. Applied stress and strain levels to produce significant delamination at ply drops have been determined, and the experimental results correlated through finite element and analytical models. Carbon fiber laminates with ply drops, while performing adequately under static loads, delaminated in fatigue at low maximum strain levels except for the thinnest ply drops. The lower elastic modulus of the glass fiber laminates resulted in much higher strains to produce delamination for equivalent ply drop geometries. The results indicate that ply drops for carbon fibers should be much thinner than those commonly used for glass fibers in wind turbine blades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.