It is well established that Toll-like receptors (TLRs) play a critical role in the generation of innate immune responses and thereby also play an important, indirect role in the initiation of subsequent adaptive T cell responses. However, T cells also express certain TLRs, and we have focused on the physiological importance of direct TLR signaling in T cells. TLRs can function as co-stimulatory receptors that complement TCR-induced signals to enhance effector T cell proliferation, survival and cytokine production. We also found that TLR signaling pathways in T cells are required for the effective clonal expansion of antigen-specific T cells during infection in vivo. Thus, the importance of TLRs in T cell-mediated immunity reflects both T cell-extrinsic and T cell-intrinsic components, which warrants a reconsideration of the dogma that restricts germ-line encoded pattern recognition to cells of the innate immune system.
During acute lymphocytic choriomeningitis virus (LCMV) infection, CD8 T cells rapidly expand and differentiate into effectors that are required for viral clearance. The accumulation of activated T cells is greatly reduced in mice lacking the adaptor molecule MyD88. Although MyD88 has generally been considered to indirectly regulate adaptive immune responses by controlling inflammatory cytokine production and Ag presentation in innate immune cells, in this study, we identify an unappreciated cell-intrinsic role for MyD88 in LCMV-specific CD8 T cells. Using reciprocal adoptive transfer models and bone marrow chimeras, we show that Myd88−/− CD8 T cells are defective in their clonal expansion in response to LCMV infection, independent of their environment. Furthermore, we show that while MyD88 is dispensable for initial activation and division of LCMV-specific CD8 T cells during the early stages of viral infection, MyD88-dependent signals are critical for supporting their survival and sustained accumulation.
The induction and maintenance of immune tolerance to transplanted tissues constitute an active process involving multiple mechanisms that work cooperatively to prevent graft rejection. These mechanisms are similar to inherent tolerance toward self antigens and have a requirement for active immunoregulation, largely T cell mediated, that promotes specific unresponsiveness to donor alloantigens. This review outlines our current understanding of the Treg subsets that contribute to allotolerance and the mechanisms by which these cells exert their effects as well as their potential for therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.