We show that a non-duplicating transformation into continuation-passing style (CPS) has no effect on control-flow analysis, a positive effect on bindingtime analysis for traditional partial evaluation, and no effect on binding-time analysis for continuation-based partial evaluation: a monovariant control-flow analysis yields equivalent results on a direct-style program and on its CPS counterpart, a monovariant binding-time analysis yields less precise results on a direct-style program than on its CPS counterpart, and an enhanced monovariant binding-time analysis yields equivalent results on a direct-style program and on its CPS counterpart. Our proof technique amounts to constructing the CPS counterpart of flow information and of binding times.Our results formalize and confirm a folklore theorem about traditional bindingtime analysis, namely that CPS has a positive effect on binding times. What may be more surprising is that the benefit does not arise from a standard refinement of program analysis, as, for instance, duplicating continuations.The present study is symptomatic of an unsettling property of program analyses: their quality is unpredictably vulnerable to syntactic accidents in source programs, i.e., to the way these programs are written. More reliable program analyses require a better understanding of the effect of syntactic change. * Extended version of an article to appear in the Journal of Functional Programming. † Current affiliation:
Currently, wide world research is focused on sustainable development and the demand for innovative clean technologies, nevertheless natural potential reconsideration could represent a viable solution for the identification and design of new pharmacological agents from renewable resources. The main reason consists of special properties of these natural derivates: immunomodulating activity with continuously perfectible selectivity and efficiency. Plants and herb extracts have been used for centuries as traditional medicines, throughout the entire world. Romanian phytotherapy represents practically a very important part of our traditional knowledge and heritage. Therapeutic properties of plant active principles still continue to be the subject of many researches. In this chapter, an overview of plant bioactive molecules from the perspective of modern phytochemistry is presented. A special part is devoted to a very special medicinal plant, Viscum album, in particular identification of amino acids and thionins from mistletoe.
There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae) was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy) and chromatographic techniques (RP-HPLC and GC-MS). The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides) from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.