Predicting the impact of suicide on incidental witnesses at an early stage helps to avert the possible side effect. When suicide is committed in public, incidental observers are left to grapple with it. In many cases, these incidental witnesses tend to experience the emotional side effect with time. In this study, we employed a Machine learning algorithms to predict the impact of suicide and suicidal attempt on incidental witnesses. This prediction was based on the accounts of suicide given by selected participants who have witnessed the act. The accounts, which was pre-processed into a corpus, were manually annotated with predefined emotion categories. While sadness emerged as the most salient emotional impact on the witnesses, fear was found as the lowest of the emotional impact on the witnesses. However, the machine learning prediction yielded highest in predicting depression with insignificant variations in the other emotional categories. This nonetheless shows that people who have witnessed suicide or suicidal attempts are inherently affected by some form of emotions that may require urgent attention to alleviate. By evaluating the performance of the Machine learning algorithms, the Support Vector Machine was superior, in terms its prediction, then the Multinomial Naïve Bayes algorithm. The outcome of the study contributes to the pool of research that sought to advocate the use of Machine Learning for predicting social phenomenon.
The study probes ways of enhancing the well-being of the aged in Ghana through the ethics of care. Through a theoretical approach, the study discusses the challenges of the aged in Ghana as well as the concept of well-being and its implication to the aged in Ghana. Based on the theory of ethics of care, the study further identifies and describes specific ways by which the Ghanaian community can enhance the wellbeing of the aged through attentiveness, responsibility, competen ce, and responsiveness. The study concludes that the fourfold-ethical elements of the ethics of care hold potential for improving the well-being of the aged in Ghana in ways that are in accord with their autonomy, security, and sense of belongingness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.