How does scientific research affect the world around us? Being able to answer this question is of great importance in order to appropriately channel efforts and resources in science. The impact by scientists in academia is currently measured by citation based metrics such as h-index, i-index and citation counts. These academic metrics aim to represent the dissemination of knowledge among scientists rather than the impact of the research on the wider world. In this work we are interested in measuring scientific impact beyond academia, on the economy, society, health and legislation (comprehensive impact). Indeed scientists are asked to demonstrate evidence of such comprehensive impact by authoring case studies in the context of the Research Excellence Framework (REF). We first investigate the extent to which existing citation based metrics can be indicative of comprehensive impact. We have collected all recent REF impact case studies from 2014 and we have linked these to papers in citation networks that we constructed and derived from CiteSeerX, arXiv and PubMed Central using a number of text processing and information retrieval techniques. We have demonstrated that existing citation-based metrics for impact measurement do not correlate well with REF impact results. We also consider metrics of online attention surrounding scientific works, such as those provided by the Altmetric API. We argue that in order to be able to evaluate wider non-academic impact we need to mine information from a much wider set of resources, including social media posts, press releases, news articles and political debates stemming from academic work. We also provide our data as a free and reusable collection for further analysis, including the PubMed citation network and the correspondence between REF case studies, grant applications and the academic literature.
Background Natural language processing (NLP) has a significant role in advancing healthcare and has been found to be key in extracting structured information from radiology reports. Understanding recent developments in NLP application to radiology is of significance but recent reviews on this are limited. This study systematically assesses and quantifies recent literature in NLP applied to radiology reports. Methods We conduct an automated literature search yielding 4836 results using automated filtering, metadata enriching steps and citation search combined with manual review. Our analysis is based on 21 variables including radiology characteristics, NLP methodology, performance, study, and clinical application characteristics. Results We present a comprehensive analysis of the 164 publications retrieved with publications in 2019 almost triple those in 2015. Each publication is categorised into one of 6 clinical application categories. Deep learning use increases in the period but conventional machine learning approaches are still prevalent. Deep learning remains challenged when data is scarce and there is little evidence of adoption into clinical practice. Despite 17% of studies reporting greater than 0.85 F1 scores, it is hard to comparatively evaluate these approaches given that most of them use different datasets. Only 14 studies made their data and 15 their code available with 10 externally validating results. Conclusions Automated understanding of clinical narratives of the radiology reports has the potential to enhance the healthcare process and we show that research in this field continues to grow. Reproducibility and explainability of models are important if the domain is to move applications into clinical use. More could be done to share code enabling validation of methods on different institutional data and to reduce heterogeneity in reporting of study properties allowing inter-study comparisons. Our results have significance for researchers in the field providing a systematic synthesis of existing work to build on, identify gaps, opportunities for collaboration and avoid duplication.
Wouldn't it be helpful if your text editor automatically suggested papers that are relevant to your research? Wouldn't it be even better if those suggestions were contextually relevant? In this paper we name a system that would accomplish this a context-based citation recommendation (CBCR) system. We specifically present Citation Resolution, a method for the evaluation of CBCR systems which exclusively uses readily-available scientific articles. Exploiting the human judgements that are already implicit in available resources, we avoid purpose-specific annotation. We apply this evaluation to three sets of methods for representing a document, based on a) the contents of the document, b) the surrounding contexts of citations to the document found in other documents, and c) a mixture of the two.
The classic ultrasonographic differentiation between benign and malignant adnexal masses encounters several limitations. Ultrasonography-based texture analysis (USTA) offers a new perspective, but its role has been incompletely evaluated. This study aimed to further investigate USTA’s capacity in differentiating benign from malignant adnexal tumors, as well as comparing the workflow and the results with previously-published research. A total of 123 adnexal lesions (benign, 88; malignant, 35) were retrospectively included. The USTA was performed on dedicated software. By applying three reduction techniques, 23 features with the highest discriminatory potential were selected. The features’ ability to identify ovarian malignancies was evaluated through univariate, multivariate, and receiver operating characteristics analyses, and also by the use of the k-nearest neighbor (KNN) classifier. Three parameters were independent predictors for ovarian neoplasms (sum variance, and two variations of the sum of squares). Benign and malignant lesions were differentiated with 90.48% sensitivity and 93.1% specificity by the prediction model (which included the three independent predictors), and with 71.43–80% sensitivity and 87.5–89.77% specificity by the KNN classifier. The USTA shows statistically significant differences between the textures of the two groups, but it is unclear whether the parameters can reflect the true histopathological characteristics of adnexal lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.