BackgroundSeizure prediction can increase independence and allow preventative treatment for patients with epilepsy. We present a proof-of-concept for a seizure prediction system that is accurate, fully automated, patient-specific, and tunable to an individual's needs.MethodsIntracranial electroencephalography (iEEG) data of ten patients obtained from a seizure advisory system were analyzed as part of a pseudoprospective seizure prediction study. First, a deep learning classifier was trained to distinguish between preictal and interictal signals. Second, classifier performance was tested on held-out iEEG data from all patients and benchmarked against the performance of a random predictor. Third, the prediction system was tuned so sensitivity or time in warning could be prioritized by the patient. Finally, a demonstration of the feasibility of deployment of the prediction system onto an ultra-low power neuromorphic chip for autonomous operation on a wearable device is provided.ResultsThe prediction system achieved mean sensitivity of 69% and mean time in warning of 27%, significantly surpassing an equivalent random predictor for all patients by 42%.ConclusionThis study demonstrates that deep learning in combination with neuromorphic hardware can provide the basis for a wearable, real-time, always-on, patient-specific seizure warning system with low power consumption and reliable long-term performance.
Objective: Seizure unpredictability is rated as one of the most challenging aspects of living with epilepsy. Seizure likelihood can be influenced by a range of environmental and physiological factors that are difficult to measure and quantify. However, some generalizable patterns have been demonstrated in seizure onset. A majority of people with epilepsy exhibit circadian rhythms in their seizure times, and many also show slower, multiday patterns. Seizure cycles can be measured using a range of recording modalities, including self-reported electronic seizure diaries. This study aimed to develop personalized forecasts from a mobile seizure diary app. Methods: Forecasts based on circadian and multiday seizure cycles were tested pseudoprospectively using data from 50 app users (mean of 109 seizures per subject). Individuals' strongest cycles were estimated from their reported seizure times and used to derive the likelihood of future seizures. The forecasting approach was validated using self-reported events and electrographic seizures from the Neurovista dataset, an existing database of long-term electroencephalography that has been widely used to develop forecasting algorithms. Results: The validation dataset showed that forecasts of seizure likelihood based on self-reported cycles were predictive of electrographic seizures for approximately half the cohort. Forecasts using only mobile app diaries allowed users to spend an average of 67.1% of their time in a low-risk state, with 14.8% of their time in a high-risk warning state. On average, 69.1% of seizures occurred during high-risk states and 10.5% of seizures occurred in low-risk states. Significance: Seizure diary apps can provide personalized forecasts of seizure likelihood that are accurate and clinically relevant for electrographic seizures. These results have immediate potential for translation to a prospective seizure forecasting trial using a mobile diary app. It is our hope that seizure forecasting apps will one day give people with epilepsy greater confidence in managing their daily activities. K E Y W O R D Scircadian rhythms, epilepsy, mobile health, multiday rhythms, seizure cycles, seizure forecasting | 777 KAROLY et AL.
Background: While the effects of prolonged sleep deprivation (24 h) on seizure occurrence has been thoroughly explored, little is known about the effects of day-to-day variations in the duration and quality of sleep on seizure probability. A better understanding of the interaction between sleep and seizures may help to improve seizure management. Methods: To explore how sleep and epileptic seizures are associated, we analysed continuous intracranial electroencephalography (EEG) recordings collected from 10 patients with refractory focal epilepsy undergoing ordinary life activities between 2010 and 2012 from three clinical centres (Austin Health, The Royal Melbourne Hospital, and St Vincent's Hospital of the Melbourne University Epilepsy Group). A total of 4340 days of sleep-wake data were analysed (average 434 days per patient). EEG data were sleep scored using a semiautomated machine learning approach into wake, stages one, two, and three non-rapid eye movement sleep, and rapid eye movement sleep categories. Findings: Seizure probability changes with day-to-day variations in sleep duration. Logistic regression models revealed that an increase in sleep duration, by 1¢66 § 0¢52 h, lowered the odds of seizure by 27% in the following 48 h. Following a seizure, patients slept for longer durations and if a seizure occurred during sleep, then sleep quality was also reduced with increased time spent aroused from sleep and reduced rapid eye movement sleep. Interpretation: Our results suggest that day-to-day deviations from regular sleep duration correlates with changes in seizure probability. Sleeping longer, by 1¢66 § 0¢52 h, may offer protective effects for patients with refractory focal epilepsy, reducing seizure risk. Furthermore, the occurrence of a seizure may disrupt sleep patterns by elongating sleep and, if the seizure occurs during sleep, reducing its quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.