Experimental evidence is provided to demonstrate that the upstream-travelling waves in two jets screeching in the A1 and A2 modes are not free-stream acoustic waves, but rather waves with support within the jet. Proper orthogonal decomposition is used to educe the coherent fluctuations associated with jet screech from a set of randomly sampled velocity fields. A streamwise Fourier transform is then used to isolate components with positive and negative phase speeds. The component with negative phase speed is shown, by comparison with a vortex-sheet model, to resemble the upstream-travelling jet wave first studied by Tam & Hu (J. Fluid Mech., vol. 201, 1989, pp. 447–483). It is further demonstrated that screech tones are only observed over the frequency range where this upstream-travelling wave is propagative.
Supersonic jets, particularly shock-containing jets, often exhibit high-intensity, discrete-frequency acoustic tones. These tones are the signature of an aeroacoustic resonance loop established by the flow. This paper considers two of the classical forms of supersonic jet resonance: screech in shock-containing free jets and tones generated by the impingement of a jet against a surface. The first half of the paper provides a historical perspective on research into both forms of resonance, ranging from the seminal works of Alan Powell to recent contributions from high-fidelity numerical simulation, experiment, and stability theory. The second half of the paper provides a critical assessment of current understanding around the four processes that characterize jet resonance: a downstream propagation of energy, an acoustic generation mechanism, an upstream propagation of energy, and a receptivity mechanism.
The structure of a screeching axisymmetric jet in the helical C mode at a nozzle pressure ratio of 3.4 issuing from a convergent nozzle is studied using high-resolution particle image velocimetry. Proper orthogonal decomposition (POD) is used to extract the dominant coherent structures within the jet. The first two modes produced by the POD are used to reconstruct a phase-averaged data sequence. A triple decomposition into mean, coherent and random velocity components is performed. The embedded shock structures within the jet are shown to strongly modulate the coherent axial stresses within the shear layer and to weakly modulate the random axial stresses. Analysis of the third and fourth moments of the velocity probability density function is used as an indicator of possible regions of shock–vortex interaction and thus screech tone generation. Peaks of kurtosis (flatness) occur at the second, third and fourth shock–boundary intersection points, with the radial position shifting towards the centreline with increasing downstream distance. Analysis of the coherent component of vorticity shows that the largest fluctuations in coherent vorticity occur at the high-speed side of the shear layer in an area extending from the second to the fourth shock cell. With reference to prior literature, the argument is made that it is this increased magnitude of coherent vorticity fluctuation that is the primary factor in the determination of which shock cells act as dominant screech sources.
High resolution planar particle image velocimetry is used to measure turbulent quantities in the region downstream of the Mach disk in an axisymmetric underexpanded jet issuing from a convergent nozzle. The internal annular shear layer generated by the slip line emanating from the triple point is shown to persist across multiple shock cells downstream. A triple decomposition based on Proper Orthogonal Decomposition shows that the external helical structure associated with the screech tone generated by the jet exerts a strong influence on velocity fluctuations in the initial region of the annular shear layer. This influence manifests as the external vortices producing oscillatory motion of the Mach disk, and thus a forcing of the internal annular shear layer. The internal shear layer is characterized by a number of azimuthal modes of varying wavenumber and type, including both helical and axisymmetric modes. Finally, the possibility of a previously hypothesized recirculation region behind the Mach disk is investigated, with no evidence found to support its existence.
online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.