Regulation of cosmetic testing and poor predictivity of preclinical drug studies has spurred efforts to develop new methods for systemic toxicity. Current in vitro assays do not fully represent physiology, often lacking xenobiotic metabolism. Functional human multi-organ systems containing iPSC derived cardiomyocytes and primary hepatocytes were maintained under flow using a low-volume pumpless system in a serum-free medium. The functional readouts for contractile force and electrical conductivity enabled the non-invasive study of cardiac function. The presence of the hepatocytes in the system induced cardiotoxic effects from cyclophosphamide and reduced them for terfenadine due to drug metabolism, as expected from each compound's pharmacology. A computational fluid dynamics simulation enabled the prediction of terfenadine-fexofenadine pharmacokinetics, which was validated by HPLC-MS. This in vitro platform recapitulates primary aspects of the in vivo crosstalk between heart and liver and enables pharmacological studies, involving both organs in a single in vitro platform. The system enables non-invasive readouts of cardiotoxicity of drugs and their metabolites. Hepatotoxicity can also be evaluated by biomarker analysis and change in metabolic function. Integration of metabolic function in toxicology models can improve adverse effects prediction in preclinical studies and this system could also be used for chronic studies as well.
A pumpless, reconfigurable, multi-organ–on–a–chip system containing recirculating serum-free medium can be used to predict preclinical on-target efficacy, metabolic conversion, and measurement of off-target toxicity of drugs using functional biological microelectromechanical systems. In the first configuration of the system, primary human hepatocytes were cultured with two cancer-derived human bone marrow cell lines for antileukemia drug analysis in which diclofenac and imatinib demonstrated a cytostatic effect on bone marrow cancer proliferation. Liver viability was not affected by imatinib; however, diclofenac reduced liver viability by 30%. The second configuration housed a multidrug-resistant vulva cancer line, a non–multidrug-resistant breast cancer line, primary hepatocytes, and induced pluripotent stem cell–derived cardiomyocytes. Tamoxifen reduced viability of the breast cancer cells only after metabolite generation but did not affect the vulva cancer cells except when coadministered with verapamil, a permeability glycoprotein inhibitor. Both tamoxifen alone and coadministration with verapamil produced off-target cardiac effects as indicated by a reduction of contractile force, beat frequency, and conduction velocity but did not affect viability. These systems demonstrate the utility of a human cell–based in vitro culture system to evaluate both on-target efficacy and off-target toxicity for parent drugs and their metabolites; these systems can augment and reduce the use of animals and increase the efficiency of drug evaluations in preclinical studies.
A functional, human, multiorgan, pumpless, immune system‐on‐a‐chip featuring recirculating THP‐1 immune cells with cardiomyocytes, skeletal muscle, and liver in separate compartments in a serum‐free medium is developed. This in vitro platform can emulate both a targeted immune response to tissue‐specific damage, and holistic proinflammatory immune response to proinflammatory compound exposure. The targeted response features fluorescently labeled THP‐1 monocytes selectively infiltrating into an amiodarone‐damaged cardiac module and changes in contractile force measurements without immune‐activated damage to the other organ modules. In contrast to the targeted immune response, general proinflammatory treatment of immune human‐on‐a‐chip systems with lipopolysaccharide (LPS) and interferon‐ γ (IFN‐ γ ) causes nonselective damage to cells in all three‐organ compartments. Biomarker analysis indicates upregulation of the proinflammation cytokines TNF‐ α , IL‐6, IL‐10, MIP‐1, MCP‐1, and RANTES in response to LPS + IFN‐ γ treatment indicative of the M1 macrophage phenotype, whereas amiodarone treatment only leads to an increase in the restorative cytokine IL‐6 which is a marker for the M2 phenotype. This system can be used as an alternative to humanized animal models to determine direct immunological effects of biological therapeutics including monoclonal antibodies, vaccines, and gene therapies, and the indirect effects caused by cytokine release from target tissues in response to a drug's pharmacokinetics (PK)/pharmacodynamics (PD) profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.