Immune responses to oxidized low-density lipoprotein (oxLDL) are proposed to be important in atherosclerosis. To identify the mechanisms of recognition that govern T cell responses to LDL particles, we generated T cell hybridomas from human ApoB100 transgenic (huB100tg) mice that were immunized with human oxLDL. Surprisingly, none of the hybridomas responded to oxidized LDL, only to native LDL and the purified LDL apolipoprotein ApoB100. However, sera from immunized mice contained IgG antibodies to oxLDL, suggesting that T cell responses to native ApoB100 help B cells making antibodies to oxLDL. ApoB100 responding CD4+ T cell hybridomas were MHC class II–restricted and expressed a single T cell receptor (TCR) variable (V) β chain, TRBV31, with different Vα chains. Immunization of huB100tgxLdlr−/− mice with a TRBV31-derived peptide induced anti-TRBV31 antibodies that blocked T cell recognition of ApoB100. This treatment significantly reduced atherosclerosis by 65%, with a concomitant reduction of macrophage infiltration and MHC class II expression in lesions. In conclusion, CD4+ T cells recognize epitopes on native ApoB100 protein, this response is associated with a limited set of clonotypic TCRs, and blocking TCR-dependent antigen recognition by these T cells protects against atherosclerosis.
AimsLow-density lipoprotein (LDL) particles cause atherosclerotic cardiovascular disease (ASCVD) through their retention, modification, and accumulation within the arterial intima. High plasma concentrations of LDL drive this disease, but LDL quality may also contribute. Here, we focused on the intrinsic propensity of LDL to aggregate upon modification. We examined whether inter-individual differences in this quality are linked with LDL lipid composition and coronary artery disease (CAD) death, and basic mechanisms for plaque growth and destabilization.Methods and resultsWe developed a novel, reproducible method to assess the susceptibility of LDL particles to aggregate during lipolysis induced ex vivo by human recombinant secretory sphingomyelinase. Among patients with an established CAD, we found that the presence of aggregation-prone LDL was predictive of future cardiovascular deaths, independently of conventional risk factors. Aggregation-prone LDL contained more sphingolipids and less phosphatidylcholines than did aggregation-resistant LDL. Three interventions in animal models to rationally alter LDL composition lowered its susceptibility to aggregate and slowed atherosclerosis. Similar compositional changes induced in humans by PCSK9 inhibition or healthy diet also lowered LDL aggregation susceptibility. Aggregated LDL in vitro activated macrophages and T cells, two key cell types involved in plaque progression and rupture.ConclusionOur results identify the susceptibility of LDL to aggregate as a novel measurable and modifiable factor in the progression of human ASCVD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.