Industrial IoT has special communication requirements, including high reliability, low latency, flexibility, and security. These are instinctively provided by the 5G mobile technology, making it a successful candidate for supporting Industrial IoT (IIoT) scenarios. The aim of this paper is to identify current research challenges and solutions in relation to 5G-enabled Industrial IoT, based on the initial requirements and promises of both domains. The methodology of the paper follows the steps of surveying state-of-the art, comparing results to identify further challenges, and drawing conclusions as lessons learned for each research domain. These areas include IIoT applications and their requirements; mobile edge cloud; back-end performance tuning; network function virtualization; and security, blockchains for IIoT, Artificial Intelligence support for 5G, and private campus networks. Beside surveying the current challenges and solutions, the paper aims to provide meaningful comparisons for each of these areas (in relation to 5G-enabled IIoT) to draw conclusions on current research gaps.
A spectacular measurement campaign was carried out on a real-world motorway stretch of Hungary with the participation of international industrial and academic partners. The measurement resulted in vehicle based and infrastructure based sensor data that will be extremely useful for future automotive R&D activities due to the available ground truth for static and dynamic content. The aim of the measurement campaign was twofold. On the one hand, road geometry was mapped with high precision in order to build Ultra High Definition (UHD) map of the test road. On the other hand, the vehicles—equipped with differential Global Navigation Satellite Systems (GNSS) for ground truth localization—carried out special test scenarios while collecting detailed data using different sensors. All of the test runs were recorded by both vehicles and infrastructure. The paper also showcases application examples to demonstrate the viability of the collected data having access to the ground truth labeling. This data set may support a large variety of solutions, for the test and validation of different kinds of approaches and techniques. As a complementary task, the available 5G network was monitored and tested under different radio conditions to investigate the latency results for different measurement scenarios. A part of the measured data has been shared openly, such that interested automotive and academic parties may use it for their own purposes.
To analyze next-generation mobile networks properly, there is a need to define key performance indicators (KPIs). Testing signaling only or just partial domains of the network have been replaced with end-to-end testing methodologies. With the appearing of machine-to-machine (M2M) applications, this question became even harder, since there is no direct user feedback. Quality of experience cannot be measured accurately in M2M applications, even if the network operates correctly and without failures. There are dozens of new—but theoretical—use-cases for 5G; however, these are not tested on a live network. The modeling methodology used throughout the paper follows the steps of observation, analysis, model creation, implementation, and verification. The first part of the paper examines the three application-types: enhanced mobile broadband (eMBB), critical Internet of Things (cIoT), and mass Internet of Things (mIoT). Afterwards, we introduce the main traffic characteristics based on current mobile networks’ traffic patterns and measurements. Considering the measurement results, we introduce a methodology and define traffic models for the simulation of different application-types. To validate these models, we compare the generated artificial traffic with real traffic patterns. In the second part of the paper, we examine what the main effects of these traffic patterns on a domestic 5G test-network are. Finally, we suggest some considerations on the possible main impacts regarding 5G network design.
Autonomous vehicles are at the forefront of interest due to the expectations of changing transportation for the better. In order to make better decisions on the road, vehicles use information from various sources: their own sensors, messages arriving from surrounding vehicles and objects, as well as from centralized entities—including their own Digital Twin. Certain decisions require the information to arrive with low latency and some of this information (such as video) requires broadband communication. Furthermore, the vehicles can populate an area, so they can represent mass communication endpoints that still need low latency and massive broadband. The mobility of the vehicles obviously requires the complete coverage of the roads with reliable wireless communication technologies fulfilling the previously mentioned needs. The fifth generation of cellular mobile technologies, 5G, addresses these requirements. The current paper presents real-life scenarios—on the M86 highway and the ZalaZONE proving ground in Hungary—for the demonstration of vehicular communication with 5G support, where the cars exchange sensor and control information with each other, their environment, and their Digital Twins. The demonstrations were carried out through the Scenario-in-the-Loop (SciL) methodology, where some of the actionable triggers were not physically present around the vehicles, but sensed or simulated around their Digital Twin. The measurements around the demonstrations aim to reveal the feasibility of the 5G Non-Standalone Architecture for certain communication scenarios, and they mainly aim to reveal the current latency and throughput limitations under real-life conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.