Global-scale forest/non-forest (FNF) maps are of crucial importance for applications like biomass estimation and deforestation monitoring. Global FNF maps based on optical remote sensing data have been produced by the wall-to-wall satellite image analyses or sampling strategies. The German Aerospace Center (DLR) and the Japan Aerospace Exploration Agency (JAXA) also made available their global FNF maps based on synthetic aperture radar (SAR) data. This paper attempted to answer the following scientific question: how comparable are the FNF products derived from optical and SAR data? As test sites we selected the Amazon (tropical rainforest) and Cerrado (tropical savanna) biomes, the two largest Brazilian biomes. Forest estimations from 2015 derived from TanDEM-X (X band; HH polarization) and ALOS-2 (L band; HV polarization) SAR data, as well as forest cover information derived from Landsat 8 optical data were compared with each other at the municipality and image sampling levels. The optical-based forest estimations considered in this study were derived from the MapBiomas project, a Brazilian multi-institutional project to map land use and land cover (LULC) classes of an entire country based on historical time series of Landsat data. In addition to the existing forest maps, a set of 1619 Landsat 8 RGB color composites was used to generate new independent comparison data composed of circular areas with 5-km diameter, which were visually interpreted after image segmentation. The Spearman rank correlation estimated the correlation among the data sets and the paired Mann–Whitney–Wilcoxon tested the hypothesis that the data sets are statistically equal. Results showed that forest maps derived from SAR and optical satellites are statistically different regardless of biome or scale of study (municipality or image sampling), except for the Cerrado´s forest estimations derived from TanDEM-X and ALOS-2. Nevertheless, the percentage of pixels classified as forest or non-forest by both SAR sensors were 90% and 80% for the Amazon and Cerrado biome, respectively, indicating an overall good agreement.
O Médio Taquari, MS, corresponde a uma região situada em áreas de terra firme do bioma Pantanal, apresenta fitofisionomias típicas do bioma Cerrado e possui importantes tributários que contribuem para o alagamento periódico do Pantanal propriamente dito. O objetivo do presente trabalho é analisar o potencial das imagens de radar de abertura sintética para discriminar as diferentes classes de cobertura de terras representativas da região do Médio Taquari. Foram analisadas imagens do sensor PALSAR (banda L, polarizações HH, HV e VV) de 11 de junho de 2009. Essas imagens foram convertidas para coeficiente de retroespalhamento e analisadas por meio dos seguintes tratamentos estatísticos: análise multivariada discriminante, teste de Kruskal-Wallis, teste ad hoc de distância e análise de correlação de Spearman. As seguintes classes de cobertura vegetal natural e antrópica foram consideradas: Floresta Estacional Semidecidual Aluvial (Fa); Savana Florestada (Sd); Savana Arborizada (Sa); Savana Gramíneo-Lenhosa (Sg); e Pastagens Cultivadas (Ap). Os resultados mostraram que é possível separar os alvos presentes na área de estudo em quaisquer das três polarizações consideradas. A única exceção ficou por conta da separação entre Sg e Ap. A polarização VV apresentou melhor desempenho, dentre as três analisadas nesse estudo. Diferença entre os retroespalhamentos provenientes da Fa e Ap ou Sg (respectivamente, os alvos com maiores e menores retroespalhamentos), foi da ordem de 4 dB a 6 dB, dependendo da polarização.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.