Background Artificial intelligence (AI) holds the promise of supporting nurses’ clinical decision-making in complex care situations or conducting tasks that are remote from direct patient interaction, such as documentation processes. There has been an increase in the research and development of AI applications for nursing care, but there is a persistent lack of an extensive overview covering the evidence base for promising application scenarios. Objective This study synthesizes literature on application scenarios for AI in nursing care settings as well as highlights adjacent aspects in the ethical, legal, and social discourse surrounding the application of AI in nursing care. Methods Following a rapid review design, PubMed, CINAHL, Association for Computing Machinery Digital Library, Institute of Electrical and Electronics Engineers Xplore, Digital Bibliography & Library Project, and Association for Information Systems Library, as well as the libraries of leading AI conferences, were searched in June 2020. Publications of original quantitative and qualitative research, systematic reviews, discussion papers, and essays on the ethical, legal, and social implications published in English were included. Eligible studies were analyzed on the basis of predetermined selection criteria. Results The titles and abstracts of 7016 publications and 704 full texts were screened, and 292 publications were included. Hospitals were the most prominent study setting, followed by independent living at home; fewer application scenarios were identified for nursing homes or home care. Most studies used machine learning algorithms, whereas expert or hybrid systems were entailed in less than every 10th publication. The application context of focusing on image and signal processing with tracking, monitoring, or the classification of activity and health followed by care coordination and communication, as well as fall detection, was the main purpose of AI applications. Few studies have reported the effects of AI applications on clinical or organizational outcomes, lacking particularly in data gathered outside laboratory conditions. In addition to technological requirements, the reporting and inclusion of certain requirements capture more overarching topics, such as data privacy, safety, and technology acceptance. Ethical, legal, and social implications reflect the discourse on technology use in health care but have mostly not been discussed in meaningful and potentially encompassing detail. Conclusions The results highlight the potential for the application of AI systems in different nursing care settings. Considering the lack of findings on the effectiveness and application of AI systems in real-world scenarios, future research should reflect on a more nursing care–specific perspective toward objectives, outcomes, and benefits. We identify that, crucially, an advancement in technological-societal discourse that surrounds the ethical and legal implications of AI applications in nursing care is a necessary next step. Further, we outline the need for greater participation among all of the stakeholders involved.
Abstract:Drawing on notions of power and the social construction of risk, we build new theory to understand the persistence of shadow systems in organizations. From a single case study in a mid-sized savings bank, we derive two feedback cycles that concern shifting power relations between business units and central IT associated with shadow systems. A distant business-IT relationship and changing business needs can create repeated cost and time pressures that make business units draw on shadow systems. The perception of risk can trigger an opposing power shift back through the decommissioning and recentralization of shadow systems. However, empirical findings suggest that the weakening tendency of formal risk-management programs may not be sufficient to stop the shadow systems cycle spinning if they fail to address the underlying causes for the emergence of shadow systems. These findings highlight long-term dynamics associated with shadow systems and pose "risk" as a power-shifting construct.
Background Healthcaare delivery will change through the increasing use of artificial intelligence (AI). Physicians are likely to be among the professions most affected, though to what extent is not yet clear. Objective We analyzed physicians’ and AI experts’ stances towards AI-induced changes. This concerned (1) physicians’ tasks, (2) job replacement risk, and (3) implications for the ways of working, including human–AI interaction, changes in job profiles, and hierarchical and cross-professional collaboration patterns. Methods We adopted an exploratory, qualitative research approach, using semi-structured interviews with 24 experts in the fields of AI and medicine, medical informatics, digital medicine, and medical education and training. Thematic analysis of the interview transcripts was performed. Results Specialized tasks currently performed by physicians in all areas of medicine would likely be taken over by AI, including bureaucratic tasks, clinical decision support, and research. However, the concern that physicians will be replaced by an AI system is unfounded, according to experts; AI systems today would be designed only for a specific use case and could not replace the human factor in the patient–physician relationship. Nevertheless, the job profile and professional role of physicians would be transformed as a result of new forms of human–AI collaboration and shifts to higher-value activities. AI could spur novel, more interprofessional teams in medical practice and research and, eventually, democratization and de-hierarchization. Conclusions The study highlights changes in job profiles of physicians and outlines demands for new categories of medical professionals considering AI-induced changes of work. Physicians should redefine their self-image and assume more responsibility in the age of AI-supported medicine. There is a need for the development of scenarios and concepts for future job profiles in the health professions as well as their education and training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.