In this paper, we investigate the relationship between automatically extracted behavioral characteristics derived from rich smartphone data and selfreported Big-Five personality traits (Extraversion, Agreeableness, Conscientiousness, Emotional Stability and Openness to Experience). Our data stems from smartphones of 117 Nokia N95 smartphone users, collected over a continuous period of 17 months in Switzerland. From the analysis, we show that several aggregated features obtained from smartphone usage data can be indicators of the Big-Five traits. Next, we describe a machine learning method to detect the personality trait of a user based on smartphone usage. Finally, we study the benefits of using gender-specific models for this task. Apart from a psychological viewpoint, this study facilitates further research on the automated classification and usage of personality traits for personalizing services on smartphones.
We present a new approach to model visual scenes in image collections, based on local invariant features and probabilistic latent space models. Our formulation provides answers to three open questions:(1) whether the invariant local features are suitable for scene (rather than object) classification; (2) whether unsupervised latent space models can be used for feature extraction in the classification task; and (3) whether the latent space formulation can discover visual cooccurrence patterns, motivating novel approaches for image organization and segmentation. Using a 9500-image dataset, our approach is validated on each of these issues. First, we show with extensive experiments on binary and multi-class scene classification tasks, that a bag-of-visterm representation, derived from local invariant descriptors, consistently outperforms state-of-the-art approaches. Second, we show that Probabilistic Latent Semantic Analysis (PLSA) generates a compact scene representation, discriminative for accurate classification, and significantly more robust when less training data are available. Third, we have exploited the ability of PLSA to automatically extract visually meaningful aspects, to propose new algorithms for aspect-based image ranking and context-sensitive image segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.