In this paper, we investigate the relationship between automatically extracted behavioral characteristics derived from rich smartphone data and selfreported Big-Five personality traits (Extraversion, Agreeableness, Conscientiousness, Emotional Stability and Openness to Experience). Our data stems from smartphones of 117 Nokia N95 smartphone users, collected over a continuous period of 17 months in Switzerland. From the analysis, we show that several aggregated features obtained from smartphone usage data can be indicators of the Big-Five traits. Next, we describe a machine learning method to detect the personality trait of a user based on smartphone usage. Finally, we study the benefits of using gender-specific models for this task. Apart from a psychological viewpoint, this study facilitates further research on the automated classification and usage of personality traits for personalizing services on smartphones.
In this paper, we investigate the relationship between behavioral characteristics derived from rich smartphone data and self-reported personality traits. Our data stems from smartphones of a set of 83 individuals collected over a continuous period of 8 months. From the analysis, we show that aggregated features obtained from smartphone usage data can be indicators of the Big-Five personality traits. Additionally, we develop an automatic method to infer the personality type of a user based on cellphone usage using supervised learning. We show that our method performs significantly above chance and up to 75.9% accuracy. To our knowledge, this constitutes the first study on the analysis and classification of personality traits using smartphone data.
In this paper, a new framework to discover places-of-interest from multimodal mobile phone data is presented. Mobile phones have been used as sensors to obtain location information from users' real lives. A place-of-interest is defined as a location where the user usually goes and stays for a while. Two levels of clustering are used to obtain places of interest. First, user location points are grouped using a time-based clustering technique which discovers stay points while dealing with missing location data. The second level performs clustering on the stay points to obtain stay regions. A grid-based clustering algorithm has been used for this purpose.To obtain more user location points, a client-server system has been installed on the mobile phones, which is able to obtain location information by integrating GPS, Wifi, GSM and accelerometer sensors, among others. An extensive set of experiments has been performed to show the benefits of using the proposed framework, using data from the real life of a significant number of users over almost a year of natural phone usage.
This paper presents an overview of the Mobile Data Challenge (MDC), a large-scale research initiative aimed at generating innovations around smartphone-based research, as well as community-based evaluation of mobile data analysis methodologies. First, we review the Lausanne Data Collection Campaign (LDCC) -an initiative to collect unique, longitudinal smartphone data set for the MDC. Then, we introduce the Open and Dedicated Tracks of the MDC; describe the specific data sets used in each of them; discuss the key design and implementation aspects introduced in order to generate privacypreserving and scientifically relevant mobile data resources for wider use by the research community; and summarize the main research trends found among the 100+ challenge submissions. We finalize by discussing the main lessons learned from the participation of several hundred researchers worldwide in the MDC Tracks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.