JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
The Permian Basin of West Texas and New Mexico is a prolific brownfield that produces from numerous clastic and carbonate horizons. Some of these reservoirs are composed of several separate thin tight sands ranging from 6 to 11 feet. Historically, these thin bed formations were bypassed because of lack of production in vertical wells. To economically exploit hydrocarbon reserves from these thin beds, maximum reservoir contact within a single layer or commingled across reservoir layers off a horizontal well path is necessary. To maintain or steer the well within these thin reservoirs, distinct log responses across the reservoir is needed for lateral correlations and well trajectory steering. Unfortunately in the thin reservoir realms such as those encountered in the Permian Basin, a lack of contrast in log measurements, such as gamma ray and resistivity, often results in poor geosteering decisions with the consequence of high costs in well construction. Advances in horizontal and LWD technology now offers real-time placement accuracy using proactive bed boundary mapping technology that incorporates a sophisticated arrangements of resistivity transmitter-receiver arrays. It is well understood in the technical domain that log measurements require a degree of change in formation log response for steering applications. However, in low log measurement contrast reservoirs, deep directional curve measurements are currently the optimum alternative for well positioning interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.