We present a complete classification of all possible sets of classical reversible gates acting on bits, in terms of which reversible transformations they generate, assuming swaps and ancilla bits are available for free. Our classification can be seen as the reversible-computing analogue of Post's lattice, a central result in mathematical logic from the 1940s. It is a step toward the ambitious goal of classifying all possible quantum gate sets acting on qubits.Our theorem implies a linear-time algorithm (which we have implemented), that takes as input the truth tables of reversible gates G and H, and that decides whether G generates H. Previously, this problem was not even known to be decidable (though with effort, one can derive from abstract considerations an algorithm that takes triply-exponential time). The theorem also implies that any n-bit reversible circuit can be "compressed" to an equivalent circuit, over the same gates, that uses at most 2 n poly (n) gates and O(1) ancilla bits; these are the first upper bounds on these quantities known, and are close to optimal. Finally, the theorem implies that every non-degenerate reversible gate can implement either every reversible transformation, or every affine transformation, when restricted to an "encoded subspace."Briefly, the theorem says that every set of reversible gates generates either all reversible transformations on n-bit strings (as the Toffoli gate does); no transformations; all transformations that preserve Hamming weight (as the Fredkin gate does); all transformations that preserve Hamming weight mod k for some k; all affine transformations (as the Controlled-NOT gate does); all affine transformations that preserve Hamming weight mod 2 or mod 4, inner products mod 2, or a combination thereof; or a previous class augmented by a NOT or NOTNOT gate. Prior to this work, it was not even known that every class was finitely generated. Ruling out the possibility of additional classes, not in the list, requires some arguments about polynomials, lattices, and Diophantine equations.
We present a trichotomy theorem for the quantum query complexity of regular languages. Every regular language has quantum query complexity Θ(1),Θ( √ n), or Θ(n). The extreme uniformity of regular languages prevents them from taking any other asymptotic complexity. This is in contrast to even the context-free languages, which we show can have query complexity Θ(n c ) for all computable c ∈ [1/2, 1]. Our result implies an equivalent trichotomy for the approximate degree of regular languages, and a dichotomy-either Θ(1) or Θ(n)-for sensitivity, block sensitivity, certificate complexity, deterministic query complexity, and randomized query complexity.The heart of the classification theorem is an explicit quantum algorithm which decides membership in any star-free language inÕ( √ n) time. This well-studied family of the regular languages admits many interesting characterizations, for instance, as those languages expressible as sentences in first-order logic over the natural numbers with the less-than relation. Therefore, not only do the star-free languages capture functions such as OR, they can also express functions such as "there exist a pair of 2's such that everything between them is a 0." Thus, we view the algorithm for star-free languages as a nontrivial generalization of Grover's algorithm which extends the quantum quadratic speedup to a much wider range of stringprocessing algorithms than was previously known. We show a variety of applications-new quantum algorithms for dynamic constant-depth Boolean formulas, balanced parentheses nested constantly many levels deep, binary addition, a restricted word break problem, and pathdiscovery in narrow grids-all obtained as immediate consequences of our classification theorem.
Abstract. A poset game is a two-player game played over a partially ordered set (poset) in which the players alternate choosing an element of the poset, removing it and all elements greater than it. The first player unable to select an element of the poset loses. Polynomial time algorithms exist for certain restricted classes of poset games, such as the game of Nim. However, until recently the complexity of arbitrary finite poset games was only known to exist somewhere between NC 1 and PSPACE. We resolve this discrepancy by showing that deciding the winner of an arbitrary finite poset game is PSPACE-complete. To this end, we give an explicit reduction from Node Kayles, a PSPACE-complete game in which players vie to chose an independent set in a graph.
In 2011, Aaronson gave a striking proof, based on quantum linear optics, that the problem of computing the permanent of a matrix is #P-hard. Aaronson's proof led naturally to hardness of approximation results for the permanent, and it was arguably simpler than Valiant's seminal proof of the same fact in 1979. Nevertheless, it did not show #P-hardness of the permanent for any class of matrices which was not previously known. In this paper, we present a collection of new results about matrix permanents that are derived primarily via these linear optical techniques.First, we show that the problem of computing the permanent of a real orthogonal matrix is #P-hard. Much like Aaronson's original proof, this implies that even a multiplicative approximation remains #P-hard to compute. The hardness result even translates to permanents of orthogonal matrices over the finite field F p 4 for p = 2, 3. Interestingly, this characterization is tight: in fields of characteristic 2, the permanent coincides with the determinant; in fields of characteristic 3, one can efficiently compute the permanent of an orthogonal matrix by a nontrivial result of Kogan.Finally, we use more elementary arguments to prove #P-hardness for the permanent of a positive semidefinite matrix. This result shows that certain probabilities of boson sampling experiments with thermal states are hard to compute exactly, despite the fact that they can be efficiently sampled by a classical computer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.