Big Data and IoT applications require highly-scalable database management system (DBMS), preferably operated in the cloud to ensure scalability also on the resource level. As the number of existing distributed DBMS is extensive, the selection and operation of a distributed DBMS in the cloud is a challenging task. While DBMS benchmarking is a supportive approach, existing frameworks do not cope with the runtime constraints of distributed DBMS and the volatility of cloud environments. Hence, DBMS evaluation frameworks need to consider DBMS runtime and cloud resource constraints to enable portable and reproducible results. In this paper we present Mowgli, a novel evaluation framework that enables the evaluation of non-functional DBMS features in correlation with DBMS runtime and cloud resource constraints. Mowgli fully automates the execution of cloud and DBMS agnostic evaluation scenarios, including DBMS cluster adaptations. The evaluation of Mowgli is based on two IoT-driven scenarios, comprising the DBMSs Apache Cassandra and Couchbase, nine DBMS runtime configurations, two cloud providers with two different storage backends. Mowgli automates the execution of the resulting 102 evaluation scenarios, verifying its support for portable and reproducible DBMS evaluations. The results provide extensive insights into the DBMS scalability and the impact of different cloud resources. The significance of the results is validated by the correlation with existing DBMS evaluation results.Since the era of RDBMS, their selection is guided by domain-specific benchmarks that have evolved together with distributed DBMSs.
At the peak of the Great Depression in mid-1931, Germany experienced a severe banking crisis. We study to what extent credit constraints contributed to the downturn by fitting a structural vector autoregressive model with data from January 1925 to September 1935. Adverse credit supply shocks contributed strongly to the downturn especially at the time of the 1931 banking crisis. Before that, credit supply shocks had also contributed to the expansion phase preceding the depression. We also find that aggregate demand and U.S. business cycle shocks were the primary drivers of the German Great Depression.
We study nominal exchange rate dynamics in the aftermath of U.S. monetary policy announcements. Using high-frequency interest rate and stock price movements around FOMC announcements, we distinguish between pure monetary policy shocks and information shocks, which are associated with new information contained in the announcements. Contractionary pure policy shocks give rise to a strong, but transitory, appreciation on impact. Information shocks also appreciate the exchange rate, but the effect builds up only slowly over time and is highly persistent. Thus, we conclude that although the short-run effects on the exchange rate are primarily due to pure policy shocks, the medium-run response is driven by information effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.