This paper presents a computational tool for estimating energy generated by low-power photovoltaic systems based on the specific conditions of the study region since the characteristic energy equation can be obtained considering the main climatological factors affecting these systems in terms of the symmetry or skewness of the random distribution of the generated energy. Furthermore, this paper is aimed at determining any correlation that exists between meteorological variables with respect to the energy generated by 5-kW solar systems in the specific climatic conditions of the Republic of Cuba. The paper also presents the results of the influence of each climate factor on the distribution symmetry of the generated energy of the solar system. Studying symmetry in statistical models is important because they allow us to establish the degree of symmetry (or skewness), which is the probability distribution of a random variable, without having to make a graphical representation of it. Statistical skewness reports the degree to which observations are distributed evenly and proportionally above and below the center (highest) point of the distribution. In the case when the mentioned distribution is balanced, it is called symmetric.
Cuba is traditionally considered a country with an underdeveloped industry. The share of the mining and metallurgical industries in the gross industrial production of the republic is small – about 3 % of GDP. The development of deposits and the extraction of nickel ores is an important sector of the economy of the Republic of Cuba, since the largest reserves of nickel and cobalt on the North American continent are located on the territory of the country. The development of the country energy system can serve as a growth factor in this sector of the economy. Due to climatic features and impossibility of integrating new capacities into the energy system through the construction of hydroelectric power plants, solar energy is a promising direction. Determining the feasibility of using solar tracking systems to increase the generation of electricity from solar power plants is one of the main challenges faced by engineers and renewable energy specialists. Currently, there are no solar tracking systems in Cuba that can provide information to assess the effectiveness of this technology in the country. The lack of the necessary technologies, as well as the high cost of developing solar power plants with tracking systems, limit the widespread introduction of such complexes. Hence follows the task of creating an inexpensive experimental model that allows assessing the effectiveness of tracking systems in specific weather conditions of the Republic of Cuba. This model will allow in future to increase the efficiency of electrical complexes with solar power plants, which provide power supply to the objects of the mineral resource complex and other regions.
This article is devoted to the study of the reasons for the low efficiency of solar generators in the Republic of Cuba. The work provides one of the possible technical solutions to this problem. The introduction of new technological solutions requires an integrated approach that evaluates the possibility of applying more efficient technologies for capturing sunlight in specific climatic conditions of the country, as well as evaluating the economic benefits of a particular solution. Therefore, this article discusses the existing problem of low efficiency of solar power plants, due to the absence of any tracking systems for the sun. The paper presents ways to solve this problem. Also, the paper presents a model of a photovoltaic solar system generator developed in the Matlab Simulink software, which makes it possible to study the main electrical variables of the complex. The experience gained in the course of the study presented in this paper can be applied in similar studies in Russia.
The problem of increasing the efficiency of existing power plants is relevant for many countries. Solar power plants built at the end of the 20th century require, as their shelf lives have now expired, not only the replacement of the solar modules, but also the modernization of their component composition. This is due to the requirements to improve the efficiency of power plants to ensure the expansion of renewable energy technologies. This article presents a technical and economic analysis of the choice of solar power plant modernization method, which consists of (1) a method for calculating the amount of power generation; (2) the modeling of solar power plants under specific climatic conditions; (3) the analysis of electricity generation using different types of PV modules and solar radiation trapping technologies in Matlab/Simulink; and (4) the technical and economic analysis of a 2.5 MW solar power plant in the Republic of Cuba (in operation since 2015), for which four different modernization options were considered. All the scenarios differ in the depth of modernization; the results of the analysis were compared with the existing plant. The results of the study showed that the different modernization scenarios respond differently to changes in the inputted technical and economic parameters (cost per kWh, inflation rate, losses, and power plant efficiency). The maximum NPV deviations among the considered scenarios are: a 1% increase in inflation reduces NPV by 2%; a decrease in losses from 20% to 10% increases the NPV by 2.5%; a change in cost from EUR 0.05 to EUR 0.1 increases the NPV by more than 3.5 times. The dependence of the economic results was also tested as a function of three factors: solar module efficiency, inflation, and the price per 1 kWh. It was found that the greatest influence on the NPV of the proposed model is the price per 1 kWh. Based on this analysis, an algorithm was developed to choose the most effective scenario for the conditions of the Republic of Cuba for the modernization of the existing power plants.
Today, the problem of increasing the efficiency of solar panels is relevant. The parameters and characteristics of solar modules are analyzed using computer modeling methods. Many contemporary scientists are busy with the problem of modeling different solar modules in different conditions. This paper presents the results of mathematical modeling in the Matlab software environment of photoelectric modules of the DSM-240-C model. Based on the obtained simulation results, it seems possible to study the characteristics of solar modules depending on various external and internal factors – temperature and illumination. Also in this paper, we present the results of a full-scale experiment of photovoltaic modules that are part of a 2.5 MW solar power plant operating in the Republic of Cuba. The results of the experiment confirm the effectiveness of the simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.