Percutaneous medical devices are indispensable in contemporary clinical practice, but the associated incidence of low to moderate mortality infections represents a significant economic and personal cost to patients and healthcare providers. Percutaneous osseointegrated prosthetics also suffer from a similar risk of infection, limiting their clinical acceptance and usage in patients with limb loss. We hypothesized that transepidermal water loss management (TEWL) at the skin-implant interface may improve and maintain a stable skin-to-implant interface. In this study, skin reactions in a 3-month, pig dorsum model were assessed using standard histology, immunohistochemistry, and quantitative image analysis. Immunohistochemical analysis of peri-implant tissue explants showed evidence of: continuous healing (cytokeratin 6+), hypergranulation tissue (procollagen+), hyper-vascularity (Collagen 4+), and the presence of fibrocytes (CD45+ and procollagen type 1+). Importantly, the gross skin response was correlated to a previous load-bearing percutaneous osseointegrated prosthetic sheep study conducted in our lab. The skin responses of the two models indicated a potentially shared mechanism of wound healing behavior at the skin-implant interface. Although TEWL management did not reduce skin migration at the skin-implant interface, the correlation of qualitative and quantitative measures validated the pig dorsum model as a high-throughput platform for translational science based percutaneous interface investigations in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.