The Permian Basin is the largest and fastest growing oil and gas (O&G) producing region in the United States. We conducted an extensive airborne campaign across the majority of the Permian in September−November, 2019 with imaging spectrometers to quantify strong methane (CH 4 ) point source emissions at facility-scales, including high frequency sampling to evaluate intermittency. We identified 1100 unique and heavy-tailed distributed sources that were sampled at least 3 times (average 8 times), showing 26% average persistence. Sources that were routinely persistent (50−100%) make up only 11% of high emitting infrastructure but 29% of quantified emissions from this population, potentially indicative of leaking equipment that merits repair. Sector attribution of plumes shows that 50% of detected emissions result from O&G production, 38% from gathering and boosting, and 12% from processing. This suggests a 20% relative shift from upstream to midstream compared to other US O&G basins for large emitters. Simultaneous spectroscopic identification of flares found that 12% of detected Permian CH 4 plume emissions were associated with either active or inactive flares. Frequent, high-resolution monitoring is necessary to accurately understand intermittent methane superemitters across large, heterogeneous O&G basins and efficiently pinpoint persistent leaks for mitigation.
Methane emissions from oil and gas (O&G) production and transmission represent a considerable contribution to climate change. These emissions comprise sporadic releases of large amounts of methane during maintenance operations or equipment failures not accounted for in current inventory estimates. We collected and analyzed hundreds of very large releases from atmospheric methane images sampled by the TROPOspheric Monitoring Instrument (TROPOMI) between 2019 and 2020. Ultra-emitters are primarily detected over the largest O&G basins throughout the world. With a total contribution equivalent to 8 to 12% (~8 million metric tons of methane per year) of the global O&G production methane emissions, mitigation of ultra-emitters is largely achievable at low costs and would lead to robust net benefits in billions of US dollars for the six major O&G-producing countries when considering societal costs of methane.
Abstract. We examine the potential for global detection of methane plumes from individual point sources with the new generation of spaceborne imaging spectrometers (EnMAP, PRISMA, EMIT, SBG, CHIME) scheduled for launch in 2019–2025. These instruments are designed to map the Earth's surface at high spatial resolution (30 m×30 m) and have a spectral resolution of 7–10 nm in the 2200–2400 nm band that should also allow useful detection of atmospheric methane. We simulate scenes viewed by EnMAP (10 nm spectral resolution, 180 signal-to-noise ratio) using the EnMAP end-to-end simulation tool with superimposed methane plumes generated by large-eddy simulations. We retrieve atmospheric methane and surface reflectivity for these scenes using the IMAP-DOAS optimal estimation algorithm. We find an EnMAP precision of 3 %–7 % for atmospheric methane depending on surface type. This allows effective single-pass detection of methane point sources as small as 100 kg h−1 depending on surface brightness, surface homogeneity, and wind speed. Successful retrievals over very heterogeneous surfaces such as an urban mosaic require finer spectral resolution. We tested the EnMAP capability with actual plume observations over oil/gas fields in California from the Airborne Visible/Infrared Imaging Spectrometer – Next Generation (AVIRIS-NG) sensor (3 m×3 m pixel resolution, 5 nm spectral resolution, SNR 200–400), by spectrally and spatially downsampling the AVIRIS-NG data to match EnMAP instrument specifications. Results confirm that EnMAP can successfully detect point sources of ∼100 kg h−1 over bright surfaces. Source rates inferred with a generic integrated mass enhancement (IME) algorithm were lower for EnMAP than for AVIRIS-NG. Better agreement may be achieved with a more customized IME algorithm. Our results suggest that imaging spectrometers in space could play an important role in the future for quantifying methane emissions from point sources worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.