Electrophysiological responses of SCN neurons to light steps are well established, but responses to more natural modulations in irradiance have been much less studied. We address this deficit first by showing that variations in irradiance for human subjects are biased towards low temporal frequencies and small magnitudes. Using extracellular recordings we show that neurons in the mouse SCN are responsive to stimuli with these characteristics, tracking sinusoidal modulations in irradiance best at lower temporal frequencies and responding to abrupt changes in irradiance over a range of commonly encountered contrasts. The spectral sensitivity of these light adapted responses indicates that they are driven primarily by cones, but with melanopsin (and/or rods) contributing under more gradual changes. Higher frequency modulations in irradiance increased time averaged firing of SCN neurons (typically considered to encode background light intensity) modestly over that encountered during steady exposure, but did not have a detectable effect on the circadian phase resetting efficiency of light. Our findings highlight the SCN’s ability to encode naturalistic temporal modulations in irradiance, while revealing that the circadian system can effectively integrate such signals over time such that phase-resetting responses remain proportional to the mean light exposure.
Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons.
Several studies have shown that bursting neurons can encode information in the number of spikes per burst: As the stimulus varies, so does the length of individual bursts. There presented stimuli, however, vary substantially among different sensory modalities and different neurons.The goal of this paper is to determine which kind of stimulus features can be encoded in burst length, and how those features depend on the mathematical properties of the underlying dynamical system.We show that the initiation and termination of each burst is triggered by specific stimulus features whose temporal characteristsics are determined by the types of bifurcations that initiate and terminate firing in each burst. As only a few bifurcations are possible, only a restricted number of encoded features exists. Here we focus specifically on describing parabolic, square-wave and elliptic bursters. We find that parabolic bursters, whose firing is initiated and terminated by saddle-node bifurcations, behave as prototypical integrators: Firing is triggered by depolarizing stimuli, and lasts for as long as excitation is prolonged. Elliptic bursters, contrastingly, constitute prototypical resonators, since both the initiating and terminating bifurcations possess well-defined oscillation time scales. Firing is therefore triggered by stimulus stretches of matching frequency and terminated by a phase-inversion in the oscillation. The behavior of square-wave bursters is somewhat intermediate, since they are triggered by a fold bifurcation of cycles of well-defined frequency but are terminated by a homoclinic bifurcation lacking an oscillating time scale. These correspondences show that stimulus selectivity is determined by the type of bifurcations. By testing several neuron models, we also demonstrate that additional biological properties that do not modify the bifurcation structure play a minor role in stimulus encoding. Moreover, we show that burst-length variability (and thereby, the capacity to transmit information) depends on a trade-off between the variance of the external signal driving the cell and the strength of the slow internal currents modulating bursts. Thus, our work explicitly links the computational properties of bursting neurons to the mathematical properties of the underlying dynamical systems.
Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP phase are not completely understood. We investigated phase-locking properties of bursting neurons using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also provide initial support for the model results by analysing example data of spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that neurons can use bursts to encode timing information contained in LFP phase into a spike-count code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.