Cutaneous wound healing occurs in distinct yet overlapping steps with the end goal of reforming a stratified epithelium to restore epidermal barrier function. A key component of this process is re-epithelialization, which involves the proliferation and migration of epidermal keratinocytes surrounding the wound. This spatiotemporally controlled process resembles aspects of the epithelial-to-mesenchymal transition (EMT) process and is thus proposed to involve a partial EMT. Here, we review current literature on the cellular and molecular changes that occur during, and the known or potential regulatory factors of cutaneous wound re-epithelialization and EMT to highlight their similarities and differences. We also discuss possible future directions toward a better understanding of the underlying regulatory mechanisms with implications for developing new therapeutics to improve wound repair in humans. Developmental Dynamics 247:473-480,
Highlights d scRNA-seq identifies four epidermal basal cell states in homeostatic adult skin d Computational analysis supports a ''hierarchical'' model of epidermal homeostasis d Basal cell states are metabolically distinct and spatially partitioned in wounded skin d Epidermal basal cells show enhanced cell fate and state plasticity during wound healing
The transition of epithelial cells into a mesenchymal state (epithelial-to-mesenchymal transition or EMT) is a highly dynamic process implicated in various biological processes. During EMT, cells do not necessarily exist in ‘pure’ epithelial or mesenchymal states. There are cells with mixed (or hybrid) features of the two, which are termed as the intermediate cell states (ICSs). While the exact functions of ICS remain elusive, together with EMT it appears to play important roles in embryogenesis, tissue development, and pathological processes such as cancer metastasis. Recent single cell experiments and advanced mathematical modeling have improved our capability in identifying ICS and provided a better understanding of ICS in development and disease. Here, we review the recent findings related to the ICS in/or EMT and highlight the challenges in the identification and functional characterization of ICS.
Highlights d scRNA-seq identifies four epidermal basal cell states in homeostatic adult skin d Computational analysis supports a ''hierarchical'' model of epidermal homeostasis d Basal cell states are metabolically distinct and spatially partitioned in wounded skin d Epidermal basal cells show enhanced cell fate and state plasticity during wound healing
Tumor heterogeneity and lack of knowledge about resistant cell states remain a barrier to targeted cancer therapies. Basal cell carcinomas (BCCs) depend on Hedgehog (Hh)/Gli signaling, but can develop mechanisms of Smoothened (SMO) inhibitor resistance. We previously identified a nuclear myocardin-related transcription factor (nMRTF) resistance pathway that amplifies noncanonical Gli1 activity, but characteristics and drivers of the nMRTF cell state remain unknown. Here, we use single cell RNA-sequencing of patient tumors to identify three prognostic surface markers (LYPD3, TACSTD2, and LY6D) which correlate with nMRTF and resistance to SMO inhibitors. The nMRTF cell state resembles transit-amplifying cells of the hair follicle matrix, with AP-1 and TGFß cooperativity driving nMRTF activation. JNK/AP-1 signaling commissions chromatin accessibility and Smad3 DNA binding leading to a transcriptional program of RhoGEFs that facilitate nMRTF activity. Importantly, small molecule AP-1 inhibitors selectively target LYPD3+/TACSTD2+/LY6D+ nMRTF human BCCs ex vivo, opening an avenue for improving combinatorial therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.