AIM:
The “2023 Guideline for the Management of Patients With Aneurysmal Subarachnoid Hemorrhage” replaces the 2012 “Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage.” The 2023 guideline is intended to provide patient-centric recommendations for clinicians to prevent, diagnose, and manage patients with aneurysmal subarachnoid hemorrhage.
METHODS:
A comprehensive search for literature published since the 2012 guideline, derived from research principally involving human subjects, published in English, and indexed in MEDLINE, PubMed, Cochrane Library, and other selected databases relevant to this guideline, was conducted between March 2022 and June 2022. In addition, the guideline writing group reviewed documents on related subject matter previously published by the American Heart Association. Newer studies published between July 2022 and November 2022 that affected recommendation content, Class of Recommendation, or Level of Evidence were included if appropriate.
STRUCTURE:
Aneurysmal subarachnoid hemorrhage is a significant global public health threat and a severely morbid and often deadly condition. The 2023 aneurysmal subarachnoid hemorrhage guideline provides recommendations based on current evidence for the treatment of these patients. The recommendations present an evidence-based approach to preventing, diagnosing, and managing patients with aneurysmal subarachnoid hemorrhage, with the intent to improve quality of care and align with patients’ and their families’ and caregivers’ interests. Many recommendations from the previous aneurysmal subarachnoid hemorrhage guidelines have been updated with new evidence, and new recommendations have been created when supported by published data.
The implant design with the shorter smooth coronal collar had no additional bone loss and may help to reduce the risk of an exposed metal implant margin in areas of esthetic concern.
Why mediate P-/Q-type and not N-type Ca2+ channels in cerebellar inhibitory interneurons? Neurotransmitter release relies most on P-/Q- and N-type Ca2+ channels in the vast majority of neurons, although all types of voltage-gated Ca2+ channels are competent in initiating exocytosis. Up to date, it remains unclear why a particular Ca2+ channel type mediates neurotransmission in certain axon terminals and another type of Ca2+ channel evokes neurotransmission in axon terminals of another region. Therefore, the present review analyzes the diversity of presynaptic Ca2+ channels displaying different synaptic properties and focuses on an analysis of distribution and function of presynaptic voltage-gated Ca2+ channels, as well as on developmental changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.