Until recently, most clinicians and scientists believed that the experience of pain is perceptually proportional to the amount of incoming peripheral nociceptive drive due to injury or inflammation in the area perceived to be painful. However, many cases of chronic pain have defied this logic, leaving clinicians perplexed as to how patients are experiencing pain with no obvious signs of injury in the periphery. Conversely, there are patients who have a peripheral injury and/or inflammation but little or no pain. What makes some individuals experience intense pain with minimal peripheral nociceptive stimulation and others experience minimal pain with serious injury? It is increasingly well accepted in the scientific community that pain can be generated and maintained or, through other mechanisms, suppressed by changes in the central nervous system, creating a complete mismatch between peripheral nociceptive drive and perceived pain. In fact, there is no known chronic pain condition where the observed extent of peripheral damage reproducibly engenders the same level of pain across individuals. Temporomandibular disorders (TMDs) are no exception. This review focuses on the idea that TMD patients range on a continuum-from those whose pain is generated peripherally to those whose pain is centralized (i.e., generated, exacerbated, and/or maintained by central nervous system mechanisms). This article uses other centralized chronic pain conditions as a guide, and it suggests that the mechanistic variability in TMD pain etiology has prevented us from adequately treating many individuals who are diagnosed with the condition. As the field moves forward, it will be imperative to understand each person's pain from its own mechanistic standpoint, which will enable clinicians to deliver personalized medicine to TMD patients and eventually provide relief in even the most recalcitrant cases.
Wound healing is a complex biological process which results in the restoration of tissue integrity. Physiologically, it can be broken down into four distinct phases of haemostasis, inflammation, proliferation and tissue remodelling. This article describes the cellular basis of wound healing and the extracellular signalling processes which control them. The function of platelets, neutrophils, macrophages and fibroblasts are considered in detail. The concept of healing by primary and secondary intention is discussed. Many factors are known to adversely affect healing including malnutrition, hypoxia, immunosuppression, chronic disease and surgery. It is essential that surgeons understand the key physiological processes involved in healing in order to minimize patient morbidity from delayed healing.
Endogenous opioid system dysfunction potentially contributes to chronic pain in fibromyalgia (FM), but it is unknown if this dysfunction is related to established neurobiological markers of hyperalgesia. We previously reported that µ-opioid receptor (MOR) availability was reduced in patients with FM as compared with healthy controls in several pain-processing brain regions. In the present study, we compared pain-evoked functional magnetic resonance imaging with endogenous MOR binding and clinical pain ratings in female opioid-naive patients with FM (n = 18) using whole-brain analyses and regions of interest from our previous research. Within antinociceptive brain regions, including the dorsolateral prefrontal cortex (r = 0.81, P < 0.001) and multiple regions of the anterior cingulate cortex (all r > 0.67; all P < 0.02), reduced MOR availability was associated with decreased pain-evoked neural activity. Additionally, reduced MOR availability was associated with lower brain activation in the nucleus accumbens (r = 0.47, P = 0.050). In many of these regions, pain-evoked activity and MOR binding potential were also associated with lower clinical affective pain ratings. These findings are the first to link endogenous opioid system tone to regional pain-evoked brain activity in a clinical pain population. Our data suggest that dysregulation of the endogenous opioid system in FM could lead to less excitation in antinociceptive brain regions by incoming noxious stimulation, resulting in the hyperalgesia and allodynia commonly observed in this population. We propose a conceptual model of affective pain dysregulation in FM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.