SUMMARY
Rapid neurotransmitter release depends on the Ca2+-sensor Synaptotagmin-1 and the SNARE complex formed by synaptobrevin, syntaxin-1 and SNAP-25. How Synaptotagmin-1 triggers release remains unclear, in part because elucidating high-resolution structures of Synaptotagmin-1-SNARE complexes has been challenging. An NMR approach based on lanthanide-induced pseudocontact shifts now reveals a dynamic binding mode where basic residues in the concave side of the Synaptotagmin-1 C2B domain β-sandwich interact with a polyacidic region of the SNARE complex formed by syntaxin-1 and SNAP-25. The physiological relevance of this dynamic structural model is supported by mutations in basic residues of Synaptotagmin-1 that markedly impair SNARE-complex binding in vitro and Synaptotagmin-1 function in neurons. Mutations with milder effects on binding have correspondingly milder effects on Synaptotagmin-1 function. Our results support a model whereby their dynamic interaction facilitates cooperation between synaptotagmin-1 and the SNAREs in inducing membrane fusion.
Enzymatic catalysis and homogeneous catalysis offer complementary means to address synthetic challenges, both in chemistry and in biology. Despite its attractiveness, the implementation of concurrent cascade reactions that combine an organometallic catalyst with an enzyme has proven challenging because of the mutual inactivation of both catalysts. To address this, we show that incorporation of a d(6)-piano stool complex within a host protein affords an artificial transfer hydrogenase (ATHase) that is fully compatible with and complementary to natural enzymes, thus enabling efficient concurrent tandem catalysis. To illustrate the generality of the approach, the ATHase was combined with various NADH-, FAD- and haem-dependent enzymes, resulting in orthogonal redox cascades. Up to three enzymes were integrated in the cascade and combined with the ATHase with a view to achieving (i) a double stereoselective amine deracemization, (ii) a horseradish peroxidase-coupled readout of the transfer hydrogenase activity towards its genetic optimization, (iii) the formation of L-pipecolic acid from L-lysine and (iv) regeneration of NADH to promote a monooxygenase-catalysed oxyfunctionalization reaction.
Cellular adhesion by classical cadherins depends critically on the exact proteolytic removal of their N-terminal prosequences. In this combined solution NMR and X-ray crystallographic study, the consequences of propeptide cleavage of an epithelial cadherin construct (domains 1 and 2) were followed at atomic level. At low protein concentration, the N-terminal processing induces docking of the tryptophan-2 side-chain into a binding pocket on the same molecule. At high concentration, cleavage induces dimerization (K D ¼ 0.72 mM, k off ¼ 0.7 s À1 ) and concomitant intermolecular exchange of the bA-strands and the tryptophan-2 side-chains. Thus, the cleavage represents the switch from a nonadhesive to the functional form of cadherin.
A new lanthanide chelating tag (M8) for paramagnetic labeling of biomolecules is presented, which is based on an eight-fold, stereoselectively methyl-substituted DOTA that can be covalently linked to the host molecule by a single disulfide bond. The steric overcrowding of the DOTA scaffold leads to an extremely rigid, kinetically and chemically inert lanthanide chelator. Its steric bulk restricts the motion of the tag relative to the host molecule. These properties result in very large pseudocontact shifts (>5 ppm) and residual dipolar couplings (>20 Hz) for Dy-M8 linked to ubiquitin, which are unprecedented for a small, single-point-attachment tag. Such large pseudocontact shifts should be well detectable even for larger proteins and distances beyond approximately 50 A. Due to its exceptionally high stability and lanthanide affinity M8 can be used under extreme chemical or physical conditions, such as those applied for protein denaturation, or when it is undesirable that buffer or protein react with excess lanthanide ions.
5 9b) (derived from 5), respectively, exhibit more complex behaviour. These observations contrast with those from the previously published benzyl congener [Zr(η-C 5 H 4 CH 2 Ph) 2 Me 2 ] 1 which, with methyl abstracting agent, generates both a solvent separated cation/anion pair and a tight ion pair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.