Activation of hepatic stellate cells in response to chronic inflammation represents a crucial step in the development of liver fibrosis. However, the molecules involved in the interaction between immune cells and stellate cells remain obscure. Herein, we identify the chemokine CCL5 (also known as RANTES), which is induced in murine and human liver after injury, as a central mediator of this interaction. First, we showed in patients with liver fibrosis that CCL5 haplotypes and intrahepatic CCL5 mRNA expression were associated with severe liver fibrosis. Consistent with this, we detected Ccl5 mRNA and CCL5 protein in 2 mouse models of liver fibrosis, induced by either injection of carbon tetrachloride (CCl 4 ) or feeding on a methionine and choline-deficient (MCD) diet. In these models, Ccl5 -/-mice exhibited decreased hepatic fibrosis, with reduced stellate cell activation and immune cell infiltration. Transplantation of Ccl5-deficient bone marrow into WT recipients attenuated liver fibrosis, identifying infiltrating hematopoietic cells as the main source of Ccl5. We then showed that treatment with the CCL5 receptor antagonist Met-CCL5 inhibited cultured stellate cell migration, proliferation, and chemokine and collagen secretion. Importantly, in vivo administration of Met-CCL5 greatly ameliorated liver fibrosis in mice and was able to accelerate fibrosis regression. Our results define a successful therapeutic approach to reduce experimental liver fibrosis by antagonizing Ccl5 receptors.
Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine that has been implicated in various inflammatory diseases. Chronic inflammation is a mainstay of liver fibrosis, a leading cause of morbidity worldwide, but the role of MIF in liver scarring has not yet been elucidated. Here we have uncovered an unexpected antifibrotic role for MIF. Mice genetically deleted in Mif ( Mif −/− ) showed strongly increased fibrosis in two models of chronic liver injury. Pronounced liver fibrosis in Mif −/− mice was associated with alterations in fibrosis-relevant genes, but not by a changed intrahepatic immune cell infiltration. Next, a direct impact of MIF on hepatic stellate cells (HSC) was assessed in vitro. Although MIF alone had only marginal effects on HSCs, it markedly inhibited PDGF-induced migration and proliferation of these cells. The inhibitory effects of MIF were mediated by CD74, which we detected as the most abundant known MIF receptor on HSCs. MIF promoted the phosphorylation of AMP-activated protein kinase (AMPK) in a CD74-dependent manner and, in turn, inhibition of AMPK reversed the inhibition of PDGF-induced HSC activation by MIF. The pivotal role of CD74 in MIF-mediated antifibrotic properties was further supported by augmented liver scarring of Cd74 −/− mice. Moreover, mice treated with recombinant MIF displayed a reduced fibrogenic response in vivo. In conclusion, we describe a previously unexplored antifibrotic function of MIF that is mediated by the CD74/AMPK signaling pathway in HSCs. The results imply MIF and CD74 as targets for treatment of liver diseases.
Recent data suggest that the chemokine receptor CXCR3 is functionally involved in fibroproliferative disorders, including liver fibrosis. Neoangiogenesis is an important pathophysiological feature of liver scarring, but a functional role of angiostatic CXCR3 chemokines in this process is unclear. We therefore investigated neoangiogenesis in carbon tetrachloride (CCl4)‐induced liver fibrosis in Cxcr3−/− and wildtype mice by histological, molecular, and functional imaging methods. Furthermore, we assessed the direct role of vascular endothelial growth factor (VEGF) overexpression on liver angiogenesis and the fibroproliferative response using a Tet‐inducible bitransgenic mouse model. The feasibility of attenuation of angiogenesis and associated liver fibrosis by therapeutic treatment with the angiostatic chemokine Cxcl9 was systematically analyzed in vitro and in vivo. The results demonstrate that fibrosis progression in Cxcr3−/− mice was strongly linked to enhanced neoangiogenesis and VEGF/VEGFR2 expression compared with wildtype littermates. Systemic VEGF overexpression led to a fibrogenic response within the liver and was associated with a significantly increased Cxcl9 expression. In vitro, Cxcl9 displayed strong antiproliferative and antimigratory effects on VEGF‐stimulated endothelial cells and stellate cells by way of reduced VEGFR2 (KDR), phospholipase Cγ (PLCγ), and extracellular signal‐regulated kinase (ERK) phosphorylation, identifying this chemokine as a direct counter‐regulatory molecule of VEGF signaling within the liver. Accordingly, systemic administration of Cxcl9 led to a strong attenuation of neoangiogenesis and experimental liver fibrosis in vivo. Conclusion: The results identify direct angiostatic and antifibrotic effects of the Cxcr3 ligand Cxcl9 in a model of experimental liver fibrosis. The amelioration of liver damage by systemic application of Cxcl9 might offer a novel therapeutic approach for chronic liver diseases associated with increased neoangiogenesis. (HEPATOLOGY 2012)
MIF is an inflammatory cytokine but is hepatoprotective in models of hepatotoxin-induced liver fibrosis. Hepatic fibrosis can also develop from metabolic liver disease, such as nonalcoholic fatty liver disease (NASH). We investigated the role of MIF in high-fat or methionine- and choline-deficient diet mouse models of NASH. Mif(-/-) mice showed elevated liver triglyceride levels (WT, 53±14 mg/g liver; Mif(-/-), 103±7 mg/g liver; P<0.05) and a 2-3-fold increased expression of lipogenic genes. Increased fatty degeneration in the livers of Mif(-/-) mice was associated with increased hepatic inflammatory cells (1.6-fold increase in F4/80(+) macrophages) and proinflammatory cytokines (e.g., 2.3-fold increase in Tnf-α and 2-fold increase in Il-6 expression). However, inflammatory cells and cytokines were decreased by 50-90% in white adipose tissue (WAT) of Mif(-/-) mice. Subset analysis showed that macrophage phenotypes in livers of Mif(-/-) mice were skewed toward M2 (e.g., 1.7-fold and 2.5-fold increase in Arg1 and Il-13, respectively, and 2.5-fold decrease in iNos), whereas macrophages were generally reduced in WAT of these mice (70% reduction in mRNA expression of F4/80(+) macrophages). The protective MIF effect was scrutinized in isolated hepatocytes. MIF reversed inflammation-induced triglyceride accumulation in Hepa1-6 cells and primary hepatocytes and also attenuated oleic acid-elicited triglyceride increase in 3T3-L1 adipocytes. Protection from fatty hepatocyte degeneration was paralleled by a 2- to 3-fold reduction by MIF of hepatocyte proinflammatory cytokine production. Blockade of MIF receptor cluster of differentiation 74 (CD74) but not of CXCR2 or CXCR4 fully reverted the protective effect of MIF, comparable to AMPK inhibition. In summary, we demonstrate that MIF mediates hepatoprotection through the CD74/AMPK pathway in hepatocytes in metabolic models of liver injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.