Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine that has been implicated in various inflammatory diseases. Chronic inflammation is a mainstay of liver fibrosis, a leading cause of morbidity worldwide, but the role of MIF in liver scarring has not yet been elucidated. Here we have uncovered an unexpected antifibrotic role for MIF. Mice genetically deleted in
Mif
(
Mif
−/−
) showed strongly increased fibrosis in two models of chronic liver injury. Pronounced liver fibrosis in
Mif
−/−
mice was associated with alterations in fibrosis-relevant genes, but not by a changed intrahepatic immune cell infiltration. Next, a direct impact of MIF on hepatic stellate cells (HSC) was assessed in vitro. Although MIF alone had only marginal effects on HSCs, it markedly inhibited PDGF-induced migration and proliferation of these cells. The inhibitory effects of MIF were mediated by CD74, which we detected as the most abundant known MIF receptor on HSCs. MIF promoted the phosphorylation of AMP-activated protein kinase (AMPK) in a CD74-dependent manner and, in turn, inhibition of AMPK reversed the inhibition of PDGF-induced HSC activation by MIF. The pivotal role of CD74 in MIF-mediated antifibrotic properties was further supported by augmented liver scarring of
Cd74
−/−
mice. Moreover, mice treated with recombinant MIF displayed a reduced fibrogenic response in vivo. In conclusion, we describe a previously unexplored antifibrotic function of MIF that is mediated by the CD74/AMPK signaling pathway in HSCs. The results imply MIF and CD74 as targets for treatment of liver diseases.
MIF is an inflammatory cytokine but is hepatoprotective in models of hepatotoxin-induced liver fibrosis. Hepatic fibrosis can also develop from metabolic liver disease, such as nonalcoholic fatty liver disease (NASH). We investigated the role of MIF in high-fat or methionine- and choline-deficient diet mouse models of NASH. Mif(-/-) mice showed elevated liver triglyceride levels (WT, 53±14 mg/g liver; Mif(-/-), 103±7 mg/g liver; P<0.05) and a 2-3-fold increased expression of lipogenic genes. Increased fatty degeneration in the livers of Mif(-/-) mice was associated with increased hepatic inflammatory cells (1.6-fold increase in F4/80(+) macrophages) and proinflammatory cytokines (e.g., 2.3-fold increase in Tnf-α and 2-fold increase in Il-6 expression). However, inflammatory cells and cytokines were decreased by 50-90% in white adipose tissue (WAT) of Mif(-/-) mice. Subset analysis showed that macrophage phenotypes in livers of Mif(-/-) mice were skewed toward M2 (e.g., 1.7-fold and 2.5-fold increase in Arg1 and Il-13, respectively, and 2.5-fold decrease in iNos), whereas macrophages were generally reduced in WAT of these mice (70% reduction in mRNA expression of F4/80(+) macrophages). The protective MIF effect was scrutinized in isolated hepatocytes. MIF reversed inflammation-induced triglyceride accumulation in Hepa1-6 cells and primary hepatocytes and also attenuated oleic acid-elicited triglyceride increase in 3T3-L1 adipocytes. Protection from fatty hepatocyte degeneration was paralleled by a 2- to 3-fold reduction by MIF of hepatocyte proinflammatory cytokine production. Blockade of MIF receptor cluster of differentiation 74 (CD74) but not of CXCR2 or CXCR4 fully reverted the protective effect of MIF, comparable to AMPK inhibition. In summary, we demonstrate that MIF mediates hepatoprotection through the CD74/AMPK pathway in hepatocytes in metabolic models of liver injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.