TRAF2 is an intracellular signal-transducing protein recruited to the TNFR1 and TNFR2 receptors following TNF stimulation. To investigate the physiological role of TRAF2, we generated TRAF2-deficient mice. traf2-/- mice appeared normal at birth but became progressively runted and died prematurely. Atrophy of the thymus and spleen and depletion of B cell precursors also were observed. Thymocytes and other hematopoietic progenitors were highly sensitive to TNF-induced cell death and serum TNF levels were elevated in these TRAF2-deficient animals. Examination of traf2-/- cells revealed a severe reduction in TNF-mediated JNK/SAPK activation but a mild effect on NF-kappaB activation. These results suggest that TRAF2-independent pathways of NF-kappaB activation exist and that TRAF2 is required for an NF-kappaB-independent signal that protects against TNF-induced apoptosis.
The opsin gene family encodes key proteins animals use to sense light and has expanded dramatically as it originated early in animal evolution. Understanding the origins of opsin diversity can offer clues to how separate lineages of animals have repurposed different opsin paralogs for different light-detecting functions. However, the more we look for opsins outside of eyes and from additional animal phyla, the more opsins we uncover, suggesting we still do not know the true extent of opsin diversity, nor the ancestry of opsin diversity in animals. To estimate the number of opsin paralogs present in both the last common ancestor of the Nephrozoa (bilaterians excluding Xenoacoelomorpha), and the ancestor of Cnidaria + Bilateria, we reconstructed a reconciled opsin phylogeny using sequences from 14 animal phyla, especially the traditionally poorly-sampled echinoderms and molluscs. Our analysis strongly supports a repertoire of at least nine opsin paralogs in the bilaterian ancestor and at least four opsin paralogs in the last common ancestor of Cnidaria + Bilateria. Thus, the kernels of extant opsin diversity arose much earlier in animal history than previously known. Further, opsins likely duplicated and were lost many times, with different lineages of animals maintaining different repertoires of opsin paralogs. This phylogenetic information can inform hypotheses about the functions of different opsin paralogs and can be used to understand how and when opsins were incorporated into complex traits like eyes and extraocular sensors.
Hundreds of ocelli are embedded in the dorsal shell plates of certain chitons. These ocelli each contain a pigment layer, retina, and lens, but it is unknown whether they provide chitons with spatial vision. It is also unclear whether chiton lenses are made from proteins, like nearly all biological lenses, or from some other material. Electron probe X-ray microanalysis and X-ray diffraction revealed that the chiton Acanthopleura granulata has the first aragonite lenses ever discovered. We found that these lenses allow A. granulata's ocelli to function as small camera eyes with an angular resolution of about 9°-12°. Animals responded to the sudden appearance of black, overhead circles with an angular size of 9°, but not to equivalent, uniform decreases in the downwelling irradiance. Our behavioral estimates of angular resolution were consistent with estimates derived from focal length and receptor spacing within the A. granulata eye. Behavioral trials further indicated that A. granulata's eyes provide the same angular resolution in both air and water. We propose that one of the two refractive indices of the birefringent chiton lens places a focused image on the retina in air, whereas the other does so in water.
BackgroundTools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families.ResultsWe generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository (http://bitbucket.org/osiris_phylogenetics/pia/) and we demonstrate PIA on a publicly-accessible web server (http://galaxy-dev.cnsi.ucsb.edu/pia/).ConclusionsOur new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-014-0350-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.