Non-technical summary Microvascular dilatations initiated locally in metabolically active tissues spread rapidly upstream, with little attenuation, to larger vessels whose relaxation results in the necessary increases in local blood flow. While this rapidly spreading response occurs due to the propagation of hyperpolarisation through gap junctions, it is not understood why the dilatation does not attenuate unless a regenerative electrical mechanism is involved. We show in skeletal muscle arterioles in vivo that no such regenerative electrical phenomenon exists. Instead, the local dilatation spreads without attenuation because the initial hyperpolarisation is supramaximal and the impact of voltage on dilatation is restricted to a narrow voltage window near the resting membrane potential. Knowledge of this mechanism increases our understanding of the processes which control blood flow to organs and explains how these processes can be compromised in diseases in which endothelial function is reduced.Abstract Blood flow is adjusted to tissue demand through rapidly ascending vasodilatations resulting from conduction of hyperpolarisation through vascular gap junctions. We investigated how these dilatations can spread without attenuation if mediated by an electrical signal. Cremaster muscle arterioles were studied in vivo by simultaneously measuring membrane potential and vessel diameter. Focal application of acetylcholine elicited hyperpolarisations which decayed passively with distance from the local site, while dilatation spread upstream without attenuation. Analysis of simultaneous recordings at the local site revealed that hyperpolarisation and dilatation were only linearly related over a restricted voltage range to a threshold potential, beyond which dilatation was maximal. Experimental data could be simulated in a computational model with electrotonic decay of hyperpolarisation but imposition of this threshold. The model was tested by reducing the amplitude of the local hyperpolarisation which led to entry into the linear range closer to the local site and decay of dilatation. Serial section electron microscopy and light dye treatment confirmed that the spread of dilatation occurred through the endothelium and that the two cell layers were tightly coupled. Generality of the mechanism was demonstrated by applying the model to the attenuated propagation of dilatation found in larger arteries. We conclude that long distance spread of locally initiated dilatations is not due to a regenerative electrical phenomenon, but rather a restricted linear relationship between voltage and vessel tone, which minimises the impact of electrotonic decay of voltage. Disease-related alterations in endothelial coupling or ion channel expression could therefore decrease the ability to adjust blood flow to meet metabolic demand.
Aims/hypothesis We examined the link between altered gap junctional communication and renal haemodynamic abnormalities in diabetes in studies performed on Zucker lean (ZL) and the Zucker diabetic fatty (ZDF) rat model of type 2 diabetes. Methods The abundance of connexin (Cx) 37, 40 and 43 was assessed by western blot and immunohistochemistry. Renal haemodynamics was characterised with GAP peptides, which are Cx mimetics, to inhibit gap junctions as a probe in both strains. Results ZDF rats exhibited higher plasma glucose, 8-epiprostaglandin F2α excretion, renal plasma flow and GFR than ZL rats. In ZDF rat kidney phosphorylation of Cx43 was enhanced compared with that in ZL rats. Immunohistochemical study revealed that the density of abundance of Cx37 in renin-secreting cells was significantly reduced in ZDF rats. Although renal autoregulation was markedly impaired in ZDF rats, it was preserved in ZL rats. GAP27 for Cx37,43 and for Cx40 impaired renal autoregulation in ZL rats, but failed to induce further alterations in renal autoregulation in ZDF rats. Conclusions/interpretation Our findings indicate that ZDF rats have glomerular hyperfiltration with impaired autoregulation. They also demonstrate enhanced phosphorylation of Cxs and reduced production of Cxs in ZDF rat kidney, especially of Cx37 in renin-secreting cells. Finally, our data suggest that an impairment of gap junctional communication in juxtaglomerular apparatus plays a role in altered renal autoregulation in diabetes.
We conclude that nitric oxide deficit produces a significant increase in the contribution of Cav3.1 and Cav3.2 T-type calcium channels to vascular tone, by regulating the bioavailability of reactive oxygen species produced by NADPH oxidase. Our data provide evidence for a novel causal link between nitric oxide deficit, oxidative stress, and T-type calcium channel function.
Reduction in endothelium-derived hyperpolarizing factor (EDHF)-mediated dilatory function in large, elastic arteries during hypertension is reversed after blood pressure normalization. We investigated whether similar mechanisms occurred in smaller mesenteric resistance arteries from aged Wistar-Kyoto (WKY) rats, spontaneously hypertensive rats (SHRs), and SHRs treated with the angiotensin-converting enzyme inhibitor, enalapril, using immunohistochemistry, serial-section electron microscopy, electrophysiology and wire myography. Unlike the superior mesenteric artery, EDHF relaxations in muscular mesenteric arteries were not reduced in SHRs, although morphological differences were found in the endothelium and smooth muscle. In WKY rats, SHRs and enalapril-treated SHRs, relaxations were mediated by small-, large-, and intermediate-conductance calcium-activated potassium channels, which were distributed in the endothelium, smooth muscle, and both layers, respectively. However, only WKY hyperpolarizations and relaxations were sensitive to gap junction blockers, and these arteries expressed more endothelial and myoendothelial gap junctions than arteries from SHRs. Responses in WKY rats, but not SHRs, were also reduced by inhibitors of epoxyeicosatrienoic acids (EETs), 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) and miconazole, although sensitivity to EET regioisomers was endothelium-independent in all rats. Enalapril treatment of SHRs reduced blood pressure and restored sensitivity to 14,15-EEZE, but not to gap junction blockers, and failed to reverse the morphological changes. In conclusion, the mechanisms underlying EDHF in muscular mesenteric arteries differ between WKY rats and SHRs, with gap junctions and EETs involved only in WKY rats. However, reduction of blood pressure in SHRs with enalapril restored a role for EETs, but not gap junctions, without reversing morphological changes, suggesting a differential control of chemical and structural alterations.The endothelium of arteries plays a critical role in the regulation of vascular tone by activating vasodilator pathways, the principal mediators being nitric oxide, prostaglandins, and endothelium-derived hyperpolarizing factor (EDHF). The action of EDHF depends on hyperpolarization and relaxation of smooth muscle cells that is initiated in the endothelium, with a rise in intracellular calcium, activation of small-conductance (SK Ca ) and intermediate-conductance (IK Ca ) calcium-dependent potassium channels, and hyperpolarization of the endothelial membrane. Although the mechanism by which endothelial hyperpolarization is transduced to smooth muscle hyperpolarization is still controversial and may vary among different vascular beds and species, there is developing consen-
Regulation of blood flow in microcirculatory networks depends on spread of local vasodilatation to encompass upstream arteries; a process mediated by endothelial conduction of hyperpolarization. Given that endothelial coupling is reduced in hypertension, we used hypertensive Cx40ko mice, in which endothelial coupling is attenuated, to investigate the contribution of the renin-angiotensin system and reduced endothelial cell coupling to conducted vasodilatation of cremaster arterioles in vivo. When the endothelium was disrupted by light dye treatment, conducted vasodilatation, following ionophoresis of acetylcholine, was abolished beyond the site of endothelial damage. In the absence of Cx40, sparse immunohistochemical staining was found for Cx37 in the endothelium, and endothelial, myoendothelial and smooth muscle gap junctions were identified by electron microscopy. Hyperpolarization decayed more rapidly in arterioles from Cx40ko than wild-type mice. This was accompanied by a shift in the threshold potential defining the linear relationship between voltage and diameter, increased T-type calcium channel expression and increased contribution of T-type (3 μmol l(-1) NNC 55-0396), relative to L-type (1 μmol l(-1) nifedipine), channels to vascular tone. The change in electromechanical coupling was reversed by inhibition of the renin-angiotensin system (candesartan, 1.0 mg kg(-1) day(-1) for 2 weeks) or by acute treatment with the superoxide scavenger tempol (1 mmol l(-1)). Candesartan and tempol treatments also significantly improved conducted vasodilatation. We conclude that conducted vasodilatation in Cx40ko mice requires the endothelium, and attenuation results from both a reduction in endothelial coupling and an angiotensin II-induced increase in oxidative stress. We suggest that during cardiovascular disease, the ability of microvascular networks to maintain tissue integrity may be compromised due to oxidative stress-induced changes in electromechanical coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.