The dissolution of anhydrous iron bromide in a mixture of pyridine and acetonitrile, in the presence of an organic amine, results in the formation of an [Fe34] metal oxide molecule, structurally characterised by alternate layers of tetrahedral and octahedral FeIII ions connected by oxide and hydroxide ions. The outer shell of the complex is capped by a combination of pyridine molecules and bromide ions. Magnetic data, measured at temperatures as low as 0.4 K and fields up to 35 T, reveal competing antiferromagnetic exchange interactions; DFT calculations showing that the magnitudes of the coupling constants are highly dependent on both the Fe‐O‐Fe angles and Fe−O distances. The simplicity of the synthetic methodology, and the structural similarity between [Fe34], bulk iron oxides, previous FeIII–oxo cages, and polyoxometalates (POMs), hints that much larger molecular FeIII oxides can be made.
The combination of two different FeIII salts in a solvothermal reaction with triethanolamine results in the formation of a high symmetry [FeIII15] cluster whose structure conforms to a centred, tetrakis...
Dissolution of FeBr3 in a mixture of acetonitrile and 3,4-lutidine in the presence of an amine results in the formation of an [Fe30] molecular metal oxide containing alternating layers of tetrahedral and octahedral FeIII ions.
An amino acid containing octanuclear heterometallic {[MnIII3Ca]2} cluster has been synthesized, alongside a structurally-related trigonal prismatic [MnIII6Ca]2+ cage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.