Despite the success of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, there remains a need for more prevention and treatment options for individuals remaining at risk of coronavirus disease 2019 (COVID-19). Monoclonal antibodies (mAbs) against the viral spike protein have potential to both prevent and treat COVID-19, and reduce the risk of severe disease and death. Here, we describe AZD7442, a combination of two mAbs, AZD8895 (tixagevimab) and AZD1061 (cilgavimab), that simultaneously bind to distinct, nonoverlapping epitopes on the spike protein receptor binding domain to neutralize SARS-CoV-2. Initially isolated from individuals with prior SARS-CoV-2 infection, the two mAbs were designed to extend their half-lives and reduce effector functions. The AZD7442 mAbs individually prevent the spike protein from binding to angiotensin-converting enzyme 2 receptor, blocking virus cell entry, and neutralize all tested SARS-CoV-2 variants of concern. In a nonhuman primate model of SARS-CoV-2 infection, prophylactic AZD7442 administration prevented infection, whereas therapeutic administration accelerated virus clearance from lung. In an ongoing phase 1 study in healthy participants (NCT04507256), a 300 mg intramuscular injection of AZD7442 provided SARS-CoV-2 serum geometric mean neutralizing titers greater than 10-fold above those of convalescent serum for at least 3 months, which remained 3-fold above those of convalescent serum at 9 months post-AZD7442 administration. Approximately 1 to 2% of serum AZD7442 was detected in nasal mucosa, a site of SARS-CoV-2 infection. Extrapolation of the time course of serum AZD7442 concentration suggests AZD7442 may provide up to 12 months of protection and benefit individuals at high-risk of COVID-19.
The purpose of this study was to investigate the effect of curcumin-treated Herpes simplex virus-1 (HSV-1) and Herpes simplex virus-2 (HSV-2) virions in cultured Vero cells. Previous studies have indicated that curcumin, a polyphenol extracted from the plant Curcuma longa, has demonstrated antiviral properties against a variety of viruses. After establishing the maximum non-cytotoxic concentrations of curcumin on Vero cells, HSV-1 and HSV-2 virions were treated with varying concentrations of curcumin. The effect on infectivity was determined by antiviral assays, using WST-1, plaque assays, adsorption and penetration assays. Treating HSV-1 and HSV-2 viruses with curcumin, at a concentration of 30 µM, reduces the production of infectious HSV-1 and HSV-2 virions in cultured Vero cells by interfering with the adsorption process. These results support the potential of curcumin to be used as a therapeutic agent to reduce the transmission of HSV-1 and HSV-2.
Cardiac calsequestrin (Casq2) associates with the ryanodine receptor 2 channel in the junctional sarcoplasmic reticulum to regulate Ca2+ release into the cytoplasm. Patients carrying mutations in CASQ2 display low resting heart rates under basal conditions and stress-induced polymorphic ventricular tachycardia (CPVT). In this study, we generate and characterize novel conditional deletion and conditional rescue mouse models to test the influence of developmental programs on the heart rate and CPVT phenotypes. We also compare the requirements for Casq2 function in the cardiac conduction system (CCS) and in working cardiomyocytes. Our study shows that the CPVT phenotype is dependent upon concurrent loss of Casq2 function in both the CCS and in working cardiomyocytes. Accordingly, restoration of Casq2 in only the CCS prevents CPVT. In addition, occurrence of CPVT is independent of the developmental history of Casq2-deficiency. In contrast, resting heart rate depends upon Casq2 gene activity only in the CCS and upon developmental history. Finally, our data support a model where low basal heart rate is a significant risk factor for CPVT.
Despite the success of SARS-CoV-2 vaccines, there remains a need for more prevention and treatment options for individuals remaining at risk of COVID-19. Monoclonal antibodies (mAbs) against the viral spike protein have potential to both prevent and treat COVID-19, and reduce the risk of severe disease and death. Here, we describe AZD7442, a combination of two mAbs, AZD8895 (tixagevimab) and AZD1061 (cilgavimab), that simultaneously bind to distinct non-overlapping epitopes on the spike protein receptor binding domain to potently neutralize SARS-CoV-2. Initially isolated from individuals with prior SARS-CoV-2 infection, the two mAbs were designed to extend their half-lives and abrogate effector functions. The AZD7442 mAbs individually prevent the spike protein from binding to angiotensin-converting enzyme 2 receptor, blocking virus cell entry. Together, these two mAbs create a higher barrier to viral escape and a wider breadth of coverage, neutralizing all known SARS-CoV-2 variants of concern. In a non-human primate model of SARS-CoV-2 infection, prophylactic AZD7442 administration prevented infection, while therapeutic administration accelerated virus clearance from lung. In an ongoing Phase I study in healthy participants (NCT04507256), 300 mg intramuscular AZD7442 provided SARS-CoV-2 serum geometric mean neutralizing titers >10-fold above those of convalescent sera for >=3 months, which remained 3-fold above those of convalescent sera 9 months post-AZD7442 administration. Approximately 1-2% of serum AZD7442 levels were detected in nasal mucosa, a site of SARS-CoV-2 infection. Extrapolation of the time course of serum AZD7442 concentrations suggests AZD7442 may provide up to 12 months of protection and benefit individuals at high-risk of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.