In this study, we examined the impact of goal-directed processing on the response to emotional pictures and the impact of emotional pictures on goal-directed processing. Subjects (N=22) viewed neutral or emotional pictures in the presence or absence of a demanding cognitive task. Goal-directed processing disrupted the BOLD response to emotional pictures. In particular, the BOLD response within bilateral amygdala and inferior frontal gyrus decreased during concurrent task performance. Moreover, the presence of both positive and negative distractors disrupted task performance, with reaction times increasing for emotional relative to neutral distractors. Moreover, in line with the suggestion of the importance of lateral frontal regions in emotional regulation [Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D., et al. (2004). For better or for worse: neural systems supporting the cognitive down-and up-regulation of negative emotion. NeuroImage, 23(2), 483-499], connectivity analysis revealed positive connectivity between lateral superior frontal cortex and regions of middle frontal cortex previously implicated in emotional suppression [Beauregard, M., Levesque, J., and Bourgouin, P. (2001). Neural correlates of conscious self-regulation of emotion. J. Neurosci., 21 (18), RC165.; Levesque, J., Eugene, F., Joanette, Y., Paquette, V., Mensour, B., Beaudoin, G., et al. (2003). Neural circuitry underlying voluntary suppression of sadness. Biol. Psychiatry, 53 (6), 502-510.;Ohira, H., Nomura, M., Ichikawa, N., Isowa, T., Iidaka, T., Sato, A., et al. (2006). Association of neural and physiological responses during voluntary emotion suppression. NeuroImage, 29 (3), 721-733] and negative connectivity with bilateral amygdala. These data suggest that processes involved in emotional regulation are recruited during task performance in the context of emotional distractors.
Chronic cannabis users are known to be impaired on a test of decision-making, the Iowa Gambling Task (IGT). Computational models of the psychological processes underlying this impairment have the potential to provide a rich description of the psychological characteristics of poor performers within particular clinical groups. We used two computational models of IGT performance, the Expectancy-Valence Learning model (EVL) and the Prospect-Valence Learning model (PVL), to assess motivational, memory, and response processes in 17 chronic cannabis abusers and 15 control participants. Model comparison and simulation methods revealed that the PVL model explained the observed data better than the EVL model. Results indicated that cannabis abusers tended to be underinfluenced by loss magnitude, treating each loss as a constant and minor negative outcome regardless of the size of the loss. In addition, they were more influenced by gains, and made decisions that were less consistent with their expectancies relative to non-using controls.Keywords decision-making; cannabis; Iowa Gambling Task; cognitive modeling Substance abusers often are impaired on laboratory measures of decision-making (Bechara et al., 2001;Petry, 2003;Petry, Bickel, & Arnett, 1998;Rogers et al., 1999). For example, in a laboratory decision-making task known as the Iowa Gambling Task (IGT; Bechara, Damasio, Damasio, & Anderson, 1994), substance abusers often make choices that lead to small, immediate gains at the cost of larger losses over time (S. Grant, Contoreggi, & London, 2000). Cannabis (marijuana) users, like other substance-using populations, perform more poorly than non-using controls on the IGT (Lamers, Bechara, Rizzo, & Ramaekers, 2006;Whitlow et al., 2004), even after prolonged abstinence from the drug (Bolla, Eldreth, Matochik, & Cadet, 2005). This impairment may be due to underlying deficits or differences in psychological processes (e.g., memory impairments, loss insensitivity, etc.), but pinpointing such processes can be difficult with traditional behavioral measures from the IGT. Recent work Address correspondence to: Julie C. Stout, School of Psychology, Psychiatry, & Psychological Medicine, Room 534, Building 17 Clayton Campus, Monash University, Victoria 3800 AUSTRALIA, Tel: +61 3 99053987, Fax: +61 3 99053948, julie.stout@med.monash.edu.au. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. NIH Public Access NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript has attempted to disentangle component processes of the IGT by means of computational cognitive models (Buse...
Economic decision-making involves the weighting of magnitude and probability of potential gains/losses. While previous work has examined the neural systems involved in decision-making, there is a need to understand how the parameters associated with decision-making (e.g., magnitude of expected reward, probability of expected reward and risk) modulate activation within these neural systems. In the current fMRI study, we modified the monetary wheel of fortune (WOF) task (Ernst et al., 2004) to examine in 25 healthy young adults the neural responses to selections of different reward magnitudes, probabilities, or risks. Selection of high, relative to low, reward magnitude increased activity in insula, amygdala, middle and posterior cingulate cortex, and basal ganglia. Selection of low-probability, as opposed to high-probability reward, increased activity in anterior cingulate cortex, as did selection of risky, relative to safe reward. In summary, decision-making that did not involve conflict, as in the magnitude contrast, recruited structures known to support the coding of reward values, and those that integrate motivational and perceptual information for behavioral responses. In contrast, decision-making under conflict, as in the probability and risk contrasts, engaged the dorsal anterior cingulate cortex whose role in conflict monitoring is well established. However, decision-making under conflict failed to activate the structures that track reward values per se. Thus, the presence of conflict in decision-making seemed to significantly alter the pattern of neural responses to simple rewards. In addition, this paradigm further clarifies the functional specialization of the cingulate cortex in processes of decision-making.
This event-related fMRI study examined the impact of processing load on the BOLD response to emotional expressions. Participants were presented with composite stimuli consisting of neutral and fearful faces upon which semi-transparent words were superimposed. This manipulation held stimulus-driven features constant across multiple levels of processing load. Participants made either: (1) gender discriminations based on the face; (2) case judgments based on the words; or (3) syllable number judgments based on the words. A significant main effect for processing load was revealed in prefrontal cortex, parietal cortex, visual processing areas, and amygdala. Critically, enhanced activity in the amygdala and medial prefrontal cortex seen during gender discriminations was significantly reduced during the linguistic task conditions. A connectivity analysis conducted to investigate theories of cognitive modulation of emotion showed that activity in dorsolateral prefrontal cortex was inversely related to activity in the ventromedial prefrontal cortex. Together, the data suggest that the processing of task-irrelevant emotional information, like neutral information, is subject to the effects of processing load and is under top-down control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.