The ability of dual-energy CT to diagnose early gout and its use as a problem-solving tool is shown here. Diagnosis of subclinical gout could avert associated long-term complications, thereby reducing disease burden and improving overall quality of life.
In patients with traumatic brain injury (TBI), diffuse axonal injury (DAI) accounts for a significant amount of parenchymal injury. Diffusion weighted magnetic resonance imaging (DWI) is known to be sensitive for detecting visible DAI lesions. We focused on detection of non-visible, quantifiable diffusion changes in specific normal-appearing brain regions, using apparent diffusion coefficient (ADC) maps. Thirty-seven adults with TBI were compared to 35 age-matched control patients. DWI was performed and ADC maps were generated. Thirty-one regions of interest (ROI) were manually drawn on ADC maps and ADC values extracted. Brain ROIs were categorized into five zones: peripheral gray matter, peripheral white matter, deep gray matter, deep white matter, and posterior fossa. ADC results were compared with the severity of injury based on the admission Glasgow Coma Scale (GCS 3-8; severe; GSC 9-15 mild/moderate) and with long-term outcome (6-12 months after injury) using the Glasgow Outcome Scale (GOS 1-3, unfavorable; GOS: 4-5, favorable) score. Mean ADC values in all five brain zones were significantly different between TBI subjects and controls (p
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.