A Gd(III)-nanodiamond conjugate [Gd(III)-ND] was prepared and characterized, enabling detection of nanodiamonds by MR imaging. The Gd(III)-ND particles significantly reduced the T1 of water protons with a per-Gd(III) relaxivity of 58.82 ± 1.18 mM−1s−1 at 1.5 Tesla (60 MHz). This represents a tenfold increase compared to the monomer Gd(III) complex (r1 = 5.42 ± 0.20 mM−1s−1) and is among the highest per-Gd(III) relaxivities reported.
We have developed a modular architecture for preparing high-relaxivity multiplexed probes utilizing click chemistry. Our system incorporates azide bearing Gd(III) chelates and a trialkyne scaffold with a functional group for subsequent modification. In optimizing the relaxivity of this new complex we undertook a study of the linker length between a chelate and the scaffold to determine its effect on relaxivity. The results show a strong dependence on flexibility between the individual chelates and the scaffold with decreasing linker length leading to significant increases in relaxivity. Nuclear magnetic resonance dispersion (NMRD) spectra were obtained to confirm a tenfold increase in the rotational correlation time from 0.049 ns to 0.60 ns at 310 K. We have additionally obtained a crystal structure demonstrating that modification with an azide does not impact the coordination of the lanthanide. The resulting multinuclear center has a 500% increase in per Gd (or ionic) relaxivity at 1.41 T versus small molecule contrast agents and a 170% increase in relaxivity at 9.4 T.
The ability to track labeled cancer cells in vivo would allow researchers to study their distribution, growth, and metastatic potential within the intact organism. Magnetic resonance (MR) imaging is invaluable for tracking cancer cells in vivo as it benefits from high spatial resolution and the absence of ionizing radiation. However, many MR contrast agents (CAs) required to label cells either do not significantly accumulate in cells or are not biologically compatible for translational studies. We have developed carbon-based nanodiamond–gadolinium(III) aggregates (NDG) for MR imaging that demonstrated remarkable properties for cell tracking in vivo. First, NDG had high relaxivity independent of field strength, a finding unprecedented for gadolinium(III) [Gd(III)]–nanoparticle conjugates. Second, NDG demonstrated a 300-fold increase in the cellular delivery of Gd(III) compared to that of clinical Gd(III) chelates without sacrificing biocompatibility. Further, we were able to monitor the tumor growth of NDG-labeled flank tumors by T1- and T2-weighted MR imaging for 26 days in vivo, longer than was reported for other MR CAs or nuclear agents. Finally, by utilizing quantitative maps of relaxation times, we were able to describe tumor morphology and heterogeneity (corroborated by histological analysis), which would not be possible with competing molecular imaging modalities.
Contrast agents for magnetic resonance imaging are frequently employed as experimental and clinical probes. Drawbacks include low signal sensitivity, fast clearance and non-specificity that limit efficacy in experimental imaging. In order to create a bio-responsive MR contrast agent, a series of four Gd(III) complexes targeted to the HaloTag reporter were designed and synthesized. HaloTag is unique among reporter proteins for its specificity, versatility, and the covalent interaction between substrate and protein. In similar systems, these properties produce prolonged in vivo lifetimes and extended imaging opportunities for contrast agents, longer rotational correlation times, and increases in relaxivity (r1) upon binding to the HaloTag protein. In this work we report a new MR contrast probe, 2CHTGd, which forms a covalent bond with a target protein and results in a dramatic increase in sensitivity. A 6-fold increase in r1, from 3.8 mM−1s−1 to 22 mM−1s−1, is observed upon 2CHTGd binding to the target protein. This probe was designed for use with the HaloTag protein system which allows for a variety of substrates (specific for MRI, florescence, or protein purification applications) to be used with the same reporter.
‘Clickable’ polymer-caged nanobins enable the combination of GdIII MRI contrast agents and an anticancer drug (gemcitabine, GMC) into a single theranostic platform. The resulting GdIII-conjugated, GMC-loaded PCNs (GdIII-PCNGMC) exhibit significant enhancements in r1 relaxivity, drug uptake, and pH-sensitive drug release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.