Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for adding value to existing observational data in agriculture by allowing embedded knowledge to be quickly leveraged. It generates site-specific information on cultivar response to climatic factors and supports on-farm management decisions for adaptation to climate variability.
Vasconcellea species, often referred to as highland papayas, consist of a group of fruit species that are closely related to the common papaya (Carica papaya). The genus deserves special attention as a number of species show potential as raw material in the tropical fruit industry, fresh or in processed products, or as genetic resources in papaya breeding programs. Some species show a very restricted distribution and are included in the IUCN Red List. This study on Vasconcellea distribution and diversity compiled collection data from five Vasconcellea projects and retrieved data from 62 herbaria, resulting in a total of 1,553 georeferenced collection sites, in 16 countries, including all 21 currently known Vasconcellea species. Spatial analysis of species richness clearly shows that Ecuador, Colombia and Peru are areas of high Vasconcellea diversity. Combination of species occurrence data with climatic data delimitates the potential distribution of each species and allows the modeling of potential richness at continent level. Based on these modeled richness maps, Ecuador appears to be the country with the highest potential Vasconcellea diversity. Despite differences in sampling densities, its neighboring countries, Peru and Colombia, possess high modeled species richness as well. A combination of observed richness maps and modeled potential richness maps makes it possible to identify important collection gaps. A Principal Component Analysis (PCA) of climate data at the collection sites allows us to define climatic preferences and adaptability of the different Vasconcellea species and to compare them with those of the common papaya
Agriculture research uses “recommendation domains” to develop and transfer crop management practices adapted to specific contexts. The scale of recommendation domains is large when compared to individual production sites and often encompasses less environmental variation than farmers manage. Farmers constantly observe crop response to management practices at a field scale. These observations are of little use for other farms if the site and the weather are not described. The value of information obtained from farmers’ experiences and controlled experiments is enhanced when the circumstances under which it was generated are characterized within the conceptual framework of a recommendation domain, this latter defined by Non-Controllable Factors (NCFs). Controllable Factors (CFs) refer to those which farmers manage. Using a combination of expert guidance and a multi-stage analytic process, we evaluated the interplay of CFs and NCFs on plantain productivity in farmers’ fields. Data were obtained from multiple sources, including farmers. Experts identified candidate variables likely to influence yields. The influence of the candidate variables on yields was tested through conditional forests analysis. Factor analysis then clustered harvests produced under similar NCFs, into Homologous Events (HEs). The relationship between NCFs, CFs and productivity in intercropped plantain were analyzed with mixed models. Inclusion of HEs increased the explanatory power of models. Low median yields in monocropping coupled with the occasional high yields within most HEs indicated that most of these farmers were not using practices that exploited the yield potential of those HEs. Varieties grown by farmers were associated with particular HEs. This indicates that farmers do adapt their management to the particular conditions of their HEs. Our observations confirm that the definition of HEs as recommendation domains at a small-scale is valid, and that the effectiveness of distinct management practices for specific micro-recommendation domains can be identified with the methodologies developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.