Molecular analyses are providing new elements to decipher the origin, domestication and dispersal of native Amazonian crops in an expanding archaeological context. Solid molecular data are available for manioc (Manihot esculenta), cacao (Theobroma cacao), pineapple (Ananas comosus), peach palm (Bactris gasipaes) and guaraná (Paullinia cupana), while hot peppers (Capsicum spp.), inga (Inga edulis), Brazil nut (Bertholletia excelsa) and cupuassu (Theobroma grandiflorum) are being studied. Emergent patterns include the relationships among domestication, antiquity (terminal Pleistocene to early Holocene), origin in the periphery, ample pre-Columbian dispersal and clear phylogeographic population structure for manioc, pineapple, peach palm and, perhaps, Capsicum peppers. Cacao represents the special case of an Amazonian species possibly brought into domestication in Mesoamerica, but close scrutiny of molecular data suggests that it may also have some incipiently domesticated populations in Amazonia. Another pattern includes the relationships among species with incipiently domesticated populations or very recently domesticated populations, rapid pre-or post-conquest dispersal and lack of phylogeographic population structure, e.g., Brazil nut, cupuassu and guaraná . These patterns contrast the peripheral origin of most species with domesticated OPEN ACCESSDiversity 2010, 2 73 populations with the subsequent concentration of their genetic resources in the center of the basin, along the major white water rivers where high pre-conquest population densities developed. Additional molecular genetic analyses on these and other species will allow better examination of these processes and will enable us to relate them to other historical ecological patterns in Amazonia.
The study of crop origins has traditionally involved identifying geographic areas of high morphological diversity, sampling populations of wild progenitor species, and the archaeological retrieval of macroremains. Recent investigations have added identification of plant microremains (phytoliths, pollen, and starch grains), biochemical and molecular genetic approaches, and dating through 14 C accelerator mass spectrometry. We investigate the origin of domesticated chili pepper, Capsicum annuum, by combining two approaches, species distribution modeling and paleobiolinguistics, with microsatellite genetic data and archaeobotanical data. The combination of these four lines of evidence yields consensus models indicating that domestication of C. annuum could have occurred in one or both of two areas of Mexico: northeastern Mexico and central-east Mexico. Genetic evidence shows more support for the more northern location, but jointly all four lines of evidence support central-east Mexico, where preceramic macroremains of chili pepper have been recovered in the Valley of Tehuacán. Located just to the east of this valley is the center of phylogenetic diversity of Proto-Otomanguean, a language spoken in mid-Holocene times and the oldest protolanguage for which a word for chili pepper reconstructs based on historical linguistics. For many crops, especially those that do not have a strong archaeobotanical record or phylogeographic pattern, it is difficult to precisely identify the time and place of their origin. Our results for chili pepper show that expressing all data in similar distance terms allows for combining contrasting lines of evidence and locating the region(s) where cultivation and domestication of a crop began.
A better knowledge of factors organizing crop genetic diversity in situ increases the efficiency of diversity analyses and conservation strategies, and requires collaboration between social and biological disciplines. Four areas of anthropology may contribute to our understanding of the impact of social factors on crop diversity: ethnobotany, cultural, cognitive and social anthropology. So far, most collaborative studies have been based on ethnobotanical methods, focusing on farmers’ individual motivations and actions, and overlooking the effects of farmer’s social organization per se. After reviewing common shortcomings in studies on sorghum and maize, this article analyzes how social anthropology, through the analysis of intermarriage, residence and seed inheritance practices, can contribute to studies on crop genetic diversity in situ. Crop varieties are thus considered social objects and socially based sampling strategies can be developed. Such an approach is justified because seed exchange is built upon trust and as such seed systems are embedded in a pre-existing social structure and centripetally oriented as a function of farmers’ social identity. The strong analogy between farmers’ cultural differentiation and crop genetic differentiation, both submitted to the same vertical transmission processes, allows proposing a common methodological framework for social anthropology and crop population genetics, where the classical interaction between genetic and environmental factors, G × E, is replaced by a three-way interaction G × E × S, where “S” stands for the social differentiation factors
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.