Acidobacteria represents an underrepresented soil bacterial phylum whose members are pervasive and copiously distributed across nearly all ecosystems. Acidobacterial sequences are abundant in soils and represent a significant fraction of soil microbial community. Being recalcitrant and difficult-to-cultivate under laboratory conditions, holistic, polyphasic approaches are required to study these refractive bacteria extensively. Acidobacteria possesses an inventory of genes involved in diverse metabolic pathways, as evidenced by their pan-genomic profiles. Because of their preponderance and ubiquity in the soil, speculations have been made regarding their dynamic roles in vital ecological processes viz., regulation of biogeochemical cycles, decomposition of biopolymers, exopolysaccharide secretion, and plant growth promotion. These bacteria are expected to have genes that might help in survival and competitive colonization in the rhizosphere, leading to the establishment of beneficial relationships with plants. Exploration of these genetic attributes and more in-depth insights into the belowground mechanics and dynamics would lead to a better understanding of the functions and ecological significance of this enigmatic phylum in the soil-plant environment. This review is an effort to provide a recent update into the diversity of genes in Acidobacteria useful for characterization, understanding ecological roles, and future biotechnological perspectives.
This research was designed to elucidate the role of exopolysaccharides (EPS) producing bacterial strains for the amelioration of drought stress in wheat. Bacterial strains were isolated from a farmer’s field in the arid region of Pakistan. Out of 24 isolated stains, two bacterial strains, Bacillus subtilis (Accession No. MT742976) and Azospirillum brasilense (Accession No. MT742977) were selected, based on their ability to produce EPS and withstand drought stress. Both bacterial strains produced a good amount of EPS and osmolytes and exhibited drought tolerance individually, however, a combination of these strains produced higher amounts of EPS (sugar 6976 µg/g, 731.5 µg/g protein, and 1.1 mg/g uronic acid) and osmolytes (proline 4.4 µg/mg and sugar 79 µg/mg) and significantly changed the level of stress-induced phytohormones (61%, 49% and 30% decrease in Indole Acetic Acid (IAA), Gibberellic Acid (GA), and Cytokinin (CK)) respectively under stress, but an increase of 27.3% in Abscisic acid (ABA) concentration was observed. When inoculated, the combination of these strains improved seed germination, seedling vigor index, and promptness index by 18.2%, 23.7%, and 61.5% respectively under osmotic stress (20% polyethylene glycol, PEG6000). They also promoted plant growth in a pot experiment with an increase of 42.9%, 29.8%, and 33.7% in shoot length, root length, and leaf area, respectively. Physiological attributes of plants were also improved by bacterial inoculation showing an increase of 39.8%, 61.5%, and 45% in chlorophyll a, chlorophyll b, and carotenoid content respectively, as compared to control. Inoculations of bacterial strains also increased the production of osmolytes such asproline, amino acid, sugar, and protein by 30%, 23%, 68%, and 21.7% respectively. Co-inoculation of these strains enhanced the production of antioxidant enzymes such as superoxide dismutase (SOD) by 35.1%, catalase (CAT) by 77.4%, and peroxidase (POD) by 40.7%. Findings of the present research demonstrated that EPS, osmolyte, stress hormones, and antioxidant enzyme-producing bacterial strains impart drought tolerance in wheat and improve its growth, morphological attributes, physiological parameters, osmolytes production, and increase antioxidant enzymes.
Siderophores are low molecular weight secondary metabolites produced by microorganisms under low iron stress as a specific iron chelator. In the present study, a rhizospheric bacterium was isolated from the rhizosphere of sesame plants from Salem district, Tamil Nadu, India and later identified as Bacillus subtilis LSBS2. It exhibited multiple plant-growth-promoting (PGP) traits such as hydrogen cyanide (HCN), ammonia, and indole acetic acid (IAA), and solubilized phosphate. The chrome azurol sulphonate (CAS) agar plate assay was used to screen the siderophore production of LSBS2 and quantitatively the isolate produced 296 mg/L of siderophores in succinic acid medium. Further characterization of the siderophore revealed that the isolate produced catecholate siderophore bacillibactin. A pot culture experiment was used to explore the effect of LSBS2 and its siderophore in promoting iron absorption and plant growth of Sesamum indicum L. Data from the present study revealed that the multifarious Bacillus sp. LSBS2 could be exploited as a potential bioinoculant for growth and yield improvement in S. indicum.
Rice is a crop that is consumed as a staple food by the majority of the people in the world and therefore failure in rice crops, due to any reason, poses a severe threat of starvation. Rice blast, caused by a fungus Pyricularia oryzae, has been ranked among the most threatening plant diseases of rice and it is found wherever rice is grown. All of the rice blast disease management strategies employed so far have had limited success and rice blast has never been eliminated from rice fields. Hence, there is a need to look for the best remedy in terms of effectiveness, sustainability, and organic nature of the method. This study was aimed at determining the plant growth-promoting and fungicidal effects of a mixture of Piper caninum and Piper betle var. Nigra leaves extracts and rhizobacteria. Gas chromatography–mass spectrophotometry (GC-MS) analysis of a mixture of leaves extracts of these plants revealed the presence of new bioactive compounds such as alpha.-gurjunene, gamma.-terpinene, and ethyl 5-formyl 3-(2-ethoxycarbonyl) in a mixture of leaves extracts of P. caninum and P. betle var. Nigra. The mixture of these extracts reduced the intensity of blast disease, inhibited P. oryzae, and improved the growth, yield, and quality of Bali rice. All treatments comprising of different concentrations of a mixture of leaves extracts of P. caninum and P. betle var. Nigra plus rhizobacteria exhibited biocontrol and bioefficacy. However, a 2% concentration of a mixture of these leaves extracts with plant growth-promoting rhizobacteria (PGPR) exhibited potent inhibition of growth of P. oryzae, a significant reduction in the intensity of blast disease, and a maximum increase in growth, yield, and quality of Bali rice. In the 15th week, the intensity of blast disease decreased from 80.18% to 7.90%. The mixture of leaves extract + PGPR also improved the height of the plant, the number of tillers, number of leaves, number of grains per panicle, number of heads per panicle, and the full-grain weight per clump. Applications of various concentrations of a mixture of leaves extracts + PGPR resulted in improvement in the potential yield of rice, however, the application of 2% extracts + PGPR gave the highest potential yield of 5.61 tha−1 compared to the low yields in the control and other treatments. The high grain yield observed with the treatment was caused by the low intensity of blast disease. This treatment also strengthened the stem and prevented the drooping of the plant and improved the quality of rice grain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.