To meet the present and forecasted market demand, bacterial alkaline phosphatase (ALP) production must be increased through innovative and efficient production strategies. Using sugarcane molasses and biogenic apatite as low-cost and easily available raw materials, this work demonstrates the scalability of ALP production from a newfound Bacillus paralicheniformis strain APSO isolated from a black liquor sample. Mathematical experimental designs including sequential Plackett–Burman followed by rotatable central composite designs were employed to select and optimize the concentrations of the statistically significant media components, which were determined to be molasses, (NH4)2NO3, and KCl. Batch cultivation in a 7-L stirred-tank bioreactor under uncontrolled pH conditions using the optimized medium resulted in a significant increase in both the volumetric and specific productivities of ALP; the alkaline phosphatase throughput 6650.9 U L−1, and µ = 0.0943 h−1; respectively, were obtained after 8 h that, ameliorated more than 20.96, 70.12 and 94 folds compared to basal media, PBD, and RCCD; respectively. However, neither the increased cell growth nor enhanced productivity of ALP was present under the pH-controlled batch cultivation. Overall, this work presents novel strategies for the statistical optimization and scaling up of bacterial ALP production using biogenic apatite.
This study highlighted the exploitation of mathematical models for optimizing the growth conditions that give the highest phosphatase productivity from a newfound Lysinibacillus sp. strain APSO isolated from a slime sample. Mathematical models facilitate data interpretation and provide a strategy to solve fermentation problems. Alkaline phosphatase (ALP) throughput was enhanced by 16.5-fold compared to basal medium based on a sequential optimization strategy that depended on two-level Plackett–Burman design and central composite design. The additional improvement for volumetric productivity and specific production yield was followed in a 7 L bench-top bioreactor to evaluate microbial growth kinetics under controlled and uncontrolled pH conditions. The pH-controlled batch cultivation condition neither supported cell growth nor enhanced ALP productivity. In contrast, the uncontrolled pH batch cultivation condition provided the highest ALP output (7119.4 U L−1) and specific growth rate (µ = 0.188 h−1) at 15 h from incubation time, which was augmented > 20.75-fold compared to the basal medium. To the authors’ knowledge, this study is the second report that deals with how to reduce the production cost of the ALP production process via utilization of agro-industrial waste, such as molasses and food waste (eggshell), as a nutrimental source for the improvement of the newfound Lysinibacillus sp. strain APSO ALP throughput.
Of ten actinobacterial isolates, Streptomyces cellulosae Actino 48 exhibited the strongest suppression of Sclerotium rolfsii mycelium growth and the highest chitinase enzyme production (49.2 U L-1 min-1). The interaction between Actino 48 and S. rolfsii was studied by scanning electron microscope (SEM), which revealed many abnormalities, malformations, and injuries of the hypha, with large loss of S. rolfsii mycelia density and mass. Three talc-based formulations with culture broth, cell-free supernatant, and cell pellet suspension of chitinase-producing Actino 48 were characterized using SEM, Fourier transform infrared spectroscopy (FTIR), and a particle size analyzer. All formulations were evaluated as biocontrol agents for reducing damping-off, root rot, and pods rot diseases of peanut caused by S. rolfsii under greenhouse and open-field conditions. The talc-based culture broth formulation was the most effective soil treatment, which decreased the percentage of peanut diseases under greenhouse and open-field conditions during two successive seasons. The culture broth formulation showed the highest increase in the dry weight of peanut shoots, root systems, and yielded pods. The transcriptional levels of three defense-related genes (PR-1, PR-3, and POD) were elevated in the culture broth formulation treatment compared with other formulations. Subsequently, the bio-friendly talc-based culture broth formulation of chitinase-producing Actino 48 could potentially be used as a biocontrol agent for controlling peanut soil-borne diseases caused by S. rolfsii.
There is indeed a tremendous increase in biotechnological production on a global scale, more and more innovative bioprocesses, therefore, require to perform ideally not only in a small lab- but also on large production scales. Efficient microbial process optimization is a significant challenge when accomplishing a variety of sustainable development and bioengineering application objectives. In Egypt's mines, several distinct types of rock phosphate (RP) are utilized as a source of phosphate fertilizers in agriculture. It is more ecologically beneficial to utilize RP bio-solubilization than acidulation. Therefore, this work aimed to strategically scale up the acid phosphatase (ACP) production and RP bio-solubilization by the newly-discovered Bacillus haynesii. The use of consecutive statistical experimental approaches of Plackett–Burman Design (PBD), and Rotatable Central Composite Design (RCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor revealed an innovative medium formulation. These approaches substantially improved ACP production, reaching 207.6 U L−1 with an ACP yield coefficient Yp/x of 25.2 and a specific growth rate (µ) of 0.07 h−1. The metals Na, Li, and Mn were the most efficiently released from RP during the solubilization process by B. haynesii. The uncontrolled pH culture condition is the most suitable setting for simultaneously improving the ACP and organic acids production. The most abundant organic acid produced through the cultivation process was lactic acid, followed by glutamic acid and hydroxybenzoic acid isomer. The findings of TGA, DSC, SEM, EDS, FTIR, and XRD analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of RP particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.