This article introduces a new way of recording intraoral pressures from a range of locations within the oral cavity. To measure pressure flow dynamics during swallowing, we fitted eight miniature pressure transducers capable of measuring absolute pressures to a chrome-cobalt palatal appliance with a labial bow. Unlike previous devices, our design provides a rigid, custom-fitted platform for the simultaneous recording of pressures at eight locations within the oral cavity during function. We placed an anterior pair of gauges to measure lingual and labial contact against the left central incisor tooth, and two pairs of gauges to measure pressure contributions of the lateral tongue margin and cheeks on the canine and first molar teeth. Finally, lingual pressure on the midline of the palate was measured by two gauges, one at the position of the premolars and one on the posterior boundary of the hard palate. We then recorded intraoral pressures in five adult volunteers seated in an upright position and asked to swallow 10 ml of water. Labial pressures on the canine rose rapidly from a resting level of 10 kPa to 33 kPa, while pressure profiles from the labial aspects of the incisor and first molar teeth followed a negative pattern, peaking at -12 kPa for the incisor and -15 kPa for the molar sensor. Pressure profiles recorded from the palatal aspects of the first molar and the canine appeared to be similar, but the former fell to -13 kPa before rising to 9 kPa, and the canine pressure rapidly increased to 22 kPa before returning to its resting level of 4 kPa. The pressure profile of the palatal aspect of the central incisor was strikingly different; at the start of the swallow, pressure dropped precipitously to -20 kPa, before slowly rising to 10 kPa. It then followed the general pattern of the other two sensors, before peaking again at 10 kPa and then returning to a resting level of 4 kPa. We also showed that there were significant negative pressures in the mouth during function, and that pressure profiles varied markedly between individuals.
Bolus propulsion during the normal oral phase of swallowing is thought to be characterised by the sequential elevation of the front, middle, and posterior regions of the dorsum of the tongue. However, the coordinated orchestration of lingual movement is still poorly understood. This study examined how pressures generated by the tongue against the hard palate differed between three points along the midline of the tongue. Specifically, we tested three hypotheses: (1) that there are defined individual patterns of pressure change within the mouth during liquid swallowing; (2) that there are significant negative pressures generated at defined moments during normal swallowing; and, (3) that liquid swallowing is governed by the interplay of pressures generated in an anteroposterior direction in the mouth. Using a metal appliance described previously, we measured absolute pressures during water swallows in six healthy volunteers (4 male, 2 female) with an age range of 25-35 years. Participants performed three 10-ml water swallows from a small cup on five separate days, thus providing data for a total of 15 separate water swallows. There was a distinct pattern to the each of the pressure signals, and this pattern was preserved in the mean obtained when the data were pooled. Furthermore, raw signals from the same subjects presented consistent patterns at each of the five testing sessions. In all subjects, pressure at the anterior and hind palate tended to be negative relative to the preswallow value; at mid-palate, however, pressure changes were less consistent between individuals. When the pressure differences between the sites were calculated, we found that during the swallow a net negative pressure difference developed between anterior and mid-palate and a net positive pressure difference developed between mid-palate and hind palate. Large, rapid fluctuations in pressure occurred at all sites and these varied several-fold between subjects. When the brief sharp reduction in pressure that occurred early in each swallow was used to determine the sequence of events, we found that activity occurred first at the anterior of the palate followed by the mid-palate and then the hind palate. There was a considerably longer and more variable delay between the start of activity at the front of the palate than at the rear of the palate. To obtain an index of the "effort" involved in generating the pressures at each site regardless of direction (positive or negative), we obtained the product of the root mean square (RMS) pressure change during each swallow (kPa) and its duration (s). Overall, the most effort appears to have occurred at the front of the palate and the least at mid-palate. Our results also showed that some participants exerted a small amount of midline pressure when swallowing, while others used a relatively large amount of tongue pressure. We conclude that while tongue behaviour during swallowing follows a classical sequence of rapid shape changes intended to contain and then propel the bolus from the oral cavity to th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.