Catalase-peroxidases have a predominant catalase activity but differ from monofunctional catalases in exhibiting a substantial peroxidase activity and in having different residues in the heme cavity. We present a kinetic study of the formation of the
The first induced circular dichroism (ICD) analyses of diazirine@cyclodextrin inclusion complexes
are reported. The stoichiometries and association constants of the guest@host complexes with α-, β-, and
γ-cyclodextrin were determined. In addition, with the α-cyclodextrin complex, UV−vis spectroscopy of water−ethanol solutions showed remarkable fine structure, probably indicating that the diazirine experiences a nonpolar
microenvironment. These analytical methods provide details about the architecture and nature of these
supramolecular carbene precursors.
Chemical behavior of carbenes (adamantylidenes) generated by photolysis of adamantanediazirines has been investigated while they were incarcerated within an organic container in water and on silica surfaces. Confined carbenes behave differently from the free ones, and their behavior is dictated by the nature and the structure of the host-guest complexes. The substituent present on the adamantyl skeleton controls the stoichiometry (1:1 or 2:2) and the orientation of guest molecules within the host.
Force-field-based atomistic simulations of host-guest supramolecular complexes between beta-cyclodextrin and several aziadamantane derivatives have been analyzed with respect to relative orientation and interaction energies, explicitly considering solvent (water) molecules. For each case, the calculations revealed two stable orientations of the guest within the host that are different in interaction energy. Fluctuation of and correlation between characteristic properties were analyzed. Among other things, it turned out that orientation angle and inclusion depth are clearly correlated. In addition, for the unsubstituted aziadamantane, the enthalpy of complex formation was calculated and compared to experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.